Skip to main content
Log in

Physical Analysis of Handshaking Between Humans: Mutual Synchronisation and Social Context

  • Published:
International Journal of Social Robotics Aims and scope Submit manuscript

Abstract

One very popular form of interpersonal interaction used in various situations is the handshake (HS), which is an act that is both physical and social. This article aims to demonstrate that the paradigm of synchrony that refers to the psychology of individuals’ temporal movement coordination could also be considered in handshaking. For this purpose, the physical features of the human HS are investigated in two different social situations: greeting and consolation. The duration and frequency of the HS and the force of the grip have been measured and compared using a prototype of a wearable system equipped with several sensors. The results show that an HS can be decomposed into four phases, and after a short physical contact, a synchrony emerges between the two persons who are shaking hands. A statistical analysis conducted on 31 persons showed that, in the two different contexts, there is a significant difference in the duration of HS, but the frequency of motion and time needed to synchronize were not impacted by the context of an interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ansermin E, Mostafaoui G, Beausse N, Gaussier P (2016) Learning to synchronously imitate gestures using entrainment effect. In: From animals to animals 14th simulation of adaptative behaviour Proc., pp 219–231

    Chapter  Google Scholar 

  2. Arns M, Laliberte T, Gosselin C (2017) Design, control and experimental validation of a haptic robotic hand performing human–robot handshake with human-like agility. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 4626–4633

  3. Astrom J, Thorell LH (1996) Greeting behaviour and psychogenic need: interviews on experiences of therapists, clergymen, and car salesmen. Percept Motor Skills 83(3):939–956

    Article  Google Scholar 

  4. Astrom J, Thorell LH, Holmlund U, d’Elia G (1993) Handshaking, personality, and psychopathology in psychiatric patients, a reliability and correlational study. Percept Motor Skills 77(3):1171–1186

    Article  Google Scholar 

  5. Avraham G, Nisky I, Fernandes HL, Acuna DE, Kording KP, Loeb GE, Karniel A (2012) Toward perceiving robots as humans: three handshake models face the Turing-Like handshake test. IEEE Trans Haptics 5(3):196–207

    Article  Google Scholar 

  6. Bates D, Machler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48

    Article  Google Scholar 

  7. Belkaid M, Lesueur-Grand C, Mostafaoui G, Cuperlier N, Gaussier P (2016) Learning sensorimotor navigation using synchrony-based partner selection. In: Proc. of the Int. Conf. on Artificial Intelligence and Robotics and the Int. Conf. on Automation, Control and Robotics Engineering, ICAIR-CACRE, pp 19:1–19:5

  8. Bernieri FJ, Petty KN (2011) The influence of handshakes on first impression accuracy. Soc Influ 6(2):78–87

    Article  Google Scholar 

  9. Buzsaki G, Mizuseki K (2014) The log-dynamic brain: how skewed distributions affect network operations. Nat Rev Neurosci 15(4):264–278

    Article  Google Scholar 

  10. Chaplin WF, Phillips JB, Brown JD, Clanton NR, Stein JL (2000) Handshaking, gender, personality, and first impressions. J Pers Soc Psychol 79(1):110–117

    Article  Google Scholar 

  11. Cox DR (1972) Regression models and life-tables. J R Stat Soc 3(2):187–220

    MathSciNet  MATH  Google Scholar 

  12. Daubechies I, Lu J, Wu HT (2011) Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl Comput Harmon Anal 30(2):243–261

    Article  MathSciNet  MATH  Google Scholar 

  13. Dautenhahn K, Woods S, Kaouri C, Walters ML, Koay KL, Werry I (2005) What is a robot companion—friend, assistant or butler? In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp 1192–1197

  14. Delaherche E, Chetouani M, Mahdhaoui A, Saint-Georges C, Viaux S, Cohen D (2012) Interpersonal synchrony: a survey of evaluation methods across disciplines. IEEE Trans Affect Comput 3(3):349–365

    Article  Google Scholar 

  15. Diana C, Thomaz AL (2011) The shape of Simon: creative design of a humanoid robot shell. In: CHI ’11 Extended Abstracts on Human Factors in Computing Systems, pp 283–298

  16. Duhamel P, Vetterli M (1990) Fast Fourier transforms: a tutorial review and a state of the art. Signal Process 19(4):259–299

    Article  MathSciNet  MATH  Google Scholar 

  17. Falahi M, Shangari TA, Sheikhjafari A, Gharghabi S, Ahmadi A, Ghidary SS (2014) Adaptive handshaking between humans and robots, using imitation: based on genderdetection and person recognition. In: Robotics and Mechatronics RSI/ISM Int. Conf. on, pp 936–941

  18. Giannopoulos E, Wang Z, Peer A, Buss M, Slater M (2011) Comparison of people’s responses to real and virtual handshakes within a virtual environment. Brain Res Bull 85(5):276–282

    Article  Google Scholar 

  19. Goldberg LR (1990) An alternative “description of personality”: the big-five factor structure. J Pers Soc Psychol 59(6):1216–1229

    Article  Google Scholar 

  20. Gosselin F, Ferlay F, Janot A (2016) Development of a new backdrivable actuator for haptic interfaces and collaborative robots. Actuators 5(2):17

    Article  Google Scholar 

  21. Grand C, Mostafaoui G, Hasnain SK, Gaussier P (2014) Synchrony detection as a reinforcement signal for learning: application to human robot interaction. Procedia Soc Behav Sci 126:82–91

    Article  Google Scholar 

  22. Haken H, Kelso J, Fuchs A, Pandya A (1990) Dynamic pattern recognition of coordinated biological motion. Neural Netw 3(4):395–401

    Article  Google Scholar 

  23. Haken H, Kelso JAS, Bunz H (1985) A theoretical model of phase transitions in human hand movements. Biol Cybern 51(5):347–356

    Article  MathSciNet  MATH  Google Scholar 

  24. Hall PM, Hall DAS (1983) The handshake as interaction. Semiotica 45(3–4):249–264

    Google Scholar 

  25. Hashimoto H, Manoratkul S (1996) Tele-Handshake through the internet. In: Int. Workshop on Robot and Human Communication, pp 90–95

  26. Hasnain SK, Gaussier P, Mostafaoui G (2012) Synchrony as a tool to establish focus of attention for autonomous robots. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp 2423–2428

  27. Huwer J (2003) Understanding handshaking: the result of contextual, interpersonal and social demands. Ph.D. thesis

  28. Jakel R, Schmidt-Rohr S, Ruhl S, Kasper A, Xue Z, Dillmann R (2012) Learning of planning models for dexterous manipulation based on human demonstrations. Int J Soc Robot 4(4):437–448

    Article  Google Scholar 

  29. Jindai M, Watanabe T (2007) Development of a handshake robot system based on a handshake approaching motion model. In: IEEE/ASME Int. Conf. on Advanced intelligent mechatronics, pp 1–6

  30. Jindai M, Watanabe T (2008) A handshake robot system based on a shake-motion leading model. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp 3330–3335

  31. Jindai M, Watanabe T (2011) Development of a handshake request motion model based on analysis of handshake motion between humans. In: 2011 IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics (AIM), pp 560–565

  32. Jindai M, Watanabe T, Shibata S, Yamamoto T (2006) Development of a handshake robot system for embodied interaction with humans. In: The 15th IEEE International Symposium on Robot and Human Interactive Communication, 2006. ROMAN 2006, pp 710–715

  33. Jung J, Kanda T, Kim MS (2013) Guidelines for contextual motion design of a humanoid robot. Int J Soc Robot 5(2):153–169

    Article  Google Scholar 

  34. Kadaba MP, Ramakrishnan HK, Wootten ME, Gainey J, Gorton G, Cochran GV (1989) Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J Orthop Res 7(6):849–860

    Article  Google Scholar 

  35. Kalegina A, Schroeder G, Allchin A, Berlin K, Cakmak M (2018) Characterizing the design space of rendered robot faces. In: Proceedings of the 2018 ACM/IEEE Int. Conf. on Human–Robot Interaction, pp 96–104

  36. Karniel A, Nisky I, Avraham G, Peles BC, Levy-Tzedek S (2010) A Turing-like handshake test for motor intelligence. In: Kappers AML, van Erp JBF, Bergmann Tiest WM, van der Helm FCT (eds) Haptics: generating and perceiving tangible sensations. EuroHaptics 2010. Lecture Notes in Computer Science, vol 6191

    Chapter  Google Scholar 

  37. Kolmogoroff A (1941) Confidence limits for an unknown distribution function. Ann Math Stat 12(4):461–463

    Article  MathSciNet  MATH  Google Scholar 

  38. Lachaux JP, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. Hum Brain Mapping 8(4):194–208

    Article  Google Scholar 

  39. Lemaignan S, Ros R, Sisbot Alami R, Beetz M (2012) Grounding the interaction: anchoring situated discourse in everyday human–robot interaction. Int J Soc Robot 4(2):181–199

    Article  Google Scholar 

  40. Li D, Rau Li Y (2010) A cross-cultural study: effect of robot appearance and task. Int J Soc Robot 2(2):175–186

    Article  Google Scholar 

  41. Lilliefors HW (1967) On the Kolmogorov–Smirnov test for normality with mean and variance unknown. J Am Stat Assoc 62(318):399–402

    Article  Google Scholar 

  42. Limpert E, Stahel WA, Abbt M (2001) Log-normal distributions across the sciences: keys and clues. BioScience 51(5):341–352

    Article  Google Scholar 

  43. Lorenz T, Weiss A, Hirche S (2016) Synchrony and reciprocity: key mechanisms for social companion robots in therapy and care. Int J Soc Robot 8(1):125–143

    Article  Google Scholar 

  44. Massey FJ (1951) The Kolmogorov–Smirnov test for goodness of fit. J Am Stat Assoc 46(253):68–78

    Article  MATH  Google Scholar 

  45. Mayagoitia RE, Nene AV, Veltink PH (2002) Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems. J Biomech 35(4):537–542

    Article  Google Scholar 

  46. Mehdi H, Boubaker O (2012) Stiffness and impedance control using Lyapunov theory for robot-aided rehabilitation. Int J Soc Robot 4(1):107–119

    Article  Google Scholar 

  47. Melnyk A, Henaff P (2016) Bio-inspired plastic controller for a robot arm to shake hand with human. In: IEEE Int. Conf. on Electronics and Nanotechnology, pp 163–168

  48. Melnyk A, Henaff P, Khomenko V, Borysenko V (2014) Sensor network architecture to measure characteristics of a handshake between humans. In: IEEE 34th Int. Conf. on Electronics and Nanotechnology, pp 264–268

  49. Moualla A, Karaouzene A, Boucenna S, Vidal D, Gaussier P (2017) Readability of the gaze and expressions of a robot museum visitor: impact of the low level sensory-motor control. In: IEEE Int Symp on Robot and Human Interactive Communication, pp 712–719

  50. Ouchi K, Hashimoto S (1997) Handshake telephone system to communicate with voice and force. In: Proceedings of IEEE Int. Workshop on Robot and Human Communication, pp 466–471

  51. Pandey A, Ali M, Alami R (2013) Towards a task-aware proactive sociable robot based on multi-state perspective-taking. Int J Soc Robot 5(2):215–236

    Article  Google Scholar 

  52. Papageorgiou D, Doulgeri Z (2015) A kinematic controller for human-robot handshaking using internal motion adaptation. In: IEEE Int Conf on Robotics and Automation, pp 5622–5627

  53. Peng XB, Abbeel P, Levine S, van de Panne M (2018) DeepMimic: example-guided deep reinforcement learning of physics-based character skills. ACM Trans Graph 37(4):1–4

    Google Scholar 

  54. Pugach G, Melnyk A, Tolochko O, Pitti A, Gaussier P (2016) Touch-based admittance control of a robotic arm using neural learning of an artificial skin. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp 3374–3380

  55. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  56. Renner E (1971) Mathematisch-statistische methoden in der praktischen anwendung. Anzeiger für Schädlingskunde 44(2):32

    Google Scholar 

  57. Righetti L, Buchli J, Ijspeert AJ (2006) Dynamic Hebbian learning in adaptive frequency oscillators. Phys D Nonlinear Phenom 216(2):269–281

    Article  MathSciNet  MATH  Google Scholar 

  58. Salem M, Kopp S, Wachsmuth I, Rohlfing K, Joublin F (2012) Generation and evaluation of communicative robot gesture. Int J Soc Robot 4(2):201–217

    Article  Google Scholar 

  59. Schiffrin D (1974) Handwork as ceremony: the case of the handshake. Semiotica 12(3):189–202

    Article  Google Scholar 

  60. Shiomi M, Sakamoto D, Kanda T, Ishi C, Ishiguro H, Hagita N (2011) Field trial of a networked robot at a train station. Int J Soc Robot 3(1):27–40

    Article  Google Scholar 

  61. Silveira TMGM, Sousa JBB, Stringhini MLFL, Freitas ATVST, Melo PGG (2014) Nutritional assessment and hand grip strength of candidates for surgery of the gastrointestinal tract. Arquivos brasileiros de cirurgia digestiva (ABCD) Braz Arch Dig Surg 27(2):104–108

    Article  Google Scholar 

  62. Stewart GL, Dustin SL, Barrick MR, Darnold TC (2008) Exploring the handshake in employment interviews. J Appl Psychol 93(5):1139–1146

    Article  Google Scholar 

  63. Thakur G, Brevdo E, Fuckar NS, Wu HT (2013) The synchrosqueezing algorithm for timevarying spectral analysis. Signal Process 93(5):1079–1094

    Article  Google Scholar 

  64. Therneau TM (2018) coxme: mixed effects Cox models. https://CRAN.Rproject.org/package=coxme. R package version 2.2-10

  65. Troje NF, Westhoff C (2006) The inversion effect in biological motion perception: evidence for a “life detector”? Curr Biol (CB) 16(8):821–824

    Article  Google Scholar 

  66. Trovato G, Zecca M, Sessa S, Jamone L, Ham J, Hashimoto K, Takanishi A (2013) Cross-cultural study on human–robot greeting interaction: acceptance and discomfort by Egyptians and Japanese. Paladyn J Behav Robot 4(2):83–93

    Google Scholar 

  67. Turvey MT (1990) Coordination. Am Psychol 45(8):938–953

    Article  Google Scholar 

  68. Walker EJ, Bischof WF, Kingstone A (2013) Take my hand: the temporal and spatial coordination of handshaking. In: Joint Action Meeting of the Cognitive Science Society

  69. Wander P, Iluyomade A, Sanmartin P, Gupta A, O’Sullivana M (2016) A tell tale handshake. Respir Med Case Rep 18:76–77

    Google Scholar 

  70. Xie G, Jin M, Wu D, Hashimoto M (2011) Control for physical human–robot interaction based on online update of dynamics. In: IEEE Int. Conf. on Computer Science and Automation Engineering, vol 2, pp 280–284

  71. Yamato Y, Jindai M, Watanabe T (2008) Development of a shake-motion leading model for human–robot handshaking. In: SICE Annual Conf., pp 502–507

  72. Yonekura K, Kim CH, Nakadai K, Tsujino H, Yokoi K (2015) Prevention of accomplishing synchronous multi-modal human–robot cooperation by using visual rhythms. Adv Robot 29(14):901–912

    Article  Google Scholar 

Download references

Acknowledgements

We thank Eric Wajnberg for reading the manuscript and his help in statistical analysis. Artem Melnyk thanks professor Philippe Gaussier for the series of fruitful discussion about synchrony phenomena, Olga Kieffer and Dr. Alain Coulbois for support and contribution to the manuscript. The authors also wish to thank all the participants for their cooperation.

Funding

This study was partially funded by French Embassy in Ukraine and French National Research Agency (ANR-09-CORD-014 INTERACT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artem Melnyk.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnyk, A., Hénaff, P. Physical Analysis of Handshaking Between Humans: Mutual Synchronisation and Social Context. Int J of Soc Robotics 11, 541–554 (2019). https://doi.org/10.1007/s12369-019-00525-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12369-019-00525-y

Keywords

Navigation