A Protocol for Identifying Characteristic Sucrose Accumulation Curves of Sugarcane Genotypes (Saccharum spp.)

Abstract

Sucrose accumulation curves represent the maturity profile of sugarcane cultivars, which is considered as a character of interest for the selection of genotypes in breeding programs. However, variations due to the environment (E) and interaction between genotype and environment (G × E) may be confused with the effect of genotype (G) and hinder the selection process of promising clones. The objective of this study was to identify a group of accumulation curves with high intra-group genotypic variability in the sucrose accumulation process throughout several E. This group is then used to select genotypes according to their maturity profile. A protocol is presented whereby the following statistical tools are integrated: (i) classification of nonlinear accumulation curves according to parameters associated with the beginning of the maturity process, sucrose accumulation rate and the time elapsed until the accumulation rate decreases, (ii) estimation of the genotypic contribution to intra-group variability of each accumulation curve parameter within each group and (iii) identification of the group of accumulation curves with the higher contribution of genotypic variability to total variance of sucrose accumulation parameters. The novelty of the work lies in the sequence of analytical steps to identify information useful to select genotypes according to their maturity profile. The protocol involves estimating parameters of nonlinear models for fitting maturity curves in multi-environment trials, clustering of curves according to the sucrose accumulation parameters and estimation of variability due to G, E and G × E within each cluster to identify the group with characteristic genotypic curves. Its implementation is illustrated using 175 sucrose accumulation curves of nine sugarcane clones evaluated in different crop cycles (first and second ratoons) and several environments (7 to 50 for each clone) in Tucumán, Argentina. The proposed protocol allows identifying sucrose accumulation curves that exhibit a high genotypic variance, thus facilitating the selection of the best clones.

This is a preview of subscription content, access via your institution.

Figure 1

References

  1. Brock, Guy, Vasyl Pihur, Susmita Datta, and Somnath Datta. 2008. ClValid: an R package for cluster validation. Journal of Statistical Software 25: 1–22. https://doi.org/10.18637/jss.v025.i04.

    Article  Google Scholar 

  2. Charrad, Malika, Nadia Ghazzali, Véronique. Boiteau, and Azam Niknafs. 2014. NbClust:: an R package for determining the relevant number of clusters in a data set. Journal of Statistical Software. https://doi.org/10.18637/jss.v061.i06.

    Article  Google Scholar 

  3. Cuenya, María Inés, Ernesto Raúl Chavanne, María Beatriz. García, Santiago Ostengo, Miguel Ángel Ahmed, Diego Daniel Costilla, Carolina Díaz. Romero, and Modesto Antonio Espinosa. 2009a. Comportamiento productivo y fitosanitario de TUC 95-37, una nueva variedad de caña de azúcar para la provincia de Tucumán. Gacetilla Agroind. EEAOC 73: 13.

    Google Scholar 

  4. Cuenya, María Inés, Ernesto Raúl Chavanne, María Beatriz. García, Santiago Ostengo, Miguel Ángel Ahmed, Diego Daniel Costilla, Carolina Díaz. Romero, and Modesto Antonio Espinosa. 2009b. Comportamiento productivo y fitosanitario de TUC 97-8, una nueva variedad de caña de azúcar para la provincia de Tucumán. Gacetilla Agroind. EEAOC 74: 11.

    Google Scholar 

  5. Cuenya, María Inés, Ernesto Raúl Chavanne, María Beatriz. García, Santiago Ostengo, Miguel Ángel Ahmed, Diego Daniel Costilla, Carolina Díaz. Romero, and Modesto Antonio Espinosa. 2010. Comportamiento productivo y fitosanitario de TUC 89-28, una nueva variedad de caña de azúcar “energética.” Avance Agroind 31(3): 13–18.

    Google Scholar 

  6. Cuenya, María Inés, Ernesto Raúl Chavanne, Santiago Ostengo, María Beatriz. García, Miguel Ángel Ahmed, Diego Daniel Costilla, Carolina Díaz. Romero, Modesto Antonio Espinosa, Nicolás Delgado, and Jorge Díaz. 2011. TUC 95-10: una nueva variedad de caña de azúcar altamente productiva. Gacetilla Agroind. EEAOC 75: 16.

    Google Scholar 

  7. Cuenya, María Inés, Ernesto Raúl Chavanne, Santiago Ostengo, María Beatriz. García, Miguel Ángel Ahmed, Diego Daniel Costilla, Carolina Díaz. Romero, Modesto Antonio Espinosa, Jorge Díaz, and Nicolás Delgado. 2013. TUC 00-19: una nueva variedad de caña de azúcar altamente productiva y de maduración temprana. GacetillaAgroind. EEAOC 77: 16.

    Google Scholar 

  8. Aybar Guchea, Matías, Santiago Ostengo, Ernesto Raúl Chavanne, and María Inés. Cuenya. 2019. Pattern analysis of genotype-by-environment interaction for yield and sucrose content of sugarcane in Tucumán, Argentina. Proceedings of the International Society of Sugar Cane Technologists 30: 453–458.

    Google Scholar 

  9. Koij, Fariba Shafiei, and Jalal Saba. 2015. Using cluster analysis and principal component analysis to group lines and determine important traits in white bean. Procedia Environmental Sciences 29: 38–40. https://doi.org/10.1016/j.proenv.2015.07.145.

    Article  Google Scholar 

  10. Ostengo, Santiago, Modesto Antonio Espinosa, Jorge Díaz, Ernesto Raúl Chavanne, Diego Daniel Costilla, and María Inés Cuenya. 2018. Relevamiento de la distribución de variedades y de otras tecnologías aplicadas en el cultivo de caña de azúcar en la provincia de Tucumán: campaña 2016/2017. Gacetilla Agroind. EEAOC 81.

  11. R Core Team. 2020. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing Vienna. .

    Google Scholar 

  12. Saez, Julio Victor, Arturo Felipe, Roberto Alfredo Sopena, Claudia Rosa Celia. Vega, and Alberto Mariotti Martínez. Jorge. 2011. Dinámica de la acumulación de sacarosa en tallos de caña de azúcar (Saccharumspp.). Ciencia y Tecnología de los Cultivos Industriales 1: 20–23.

    Google Scholar 

  13. Wagih, Mohamed, Ambo Ala, and Yumu Musa. 2004. Evaluation of sugarcane varieties for maturity earliness and selection for efficient sugar accumulation. Sugar Tech 6: 297–304. https://doi.org/10.1007/BF02942512.

    CAS  Article  Google Scholar 

  14. Wanessa, Jacqueline, De Lima Pereira, Elaine Cristina, Lucas Nunes, Jurema Mansur, Custódio Nogueira, Péricles. De Albuquerque, Melo Filho, Liziane Maria De. Lima, and Roseane Cavalcanti. 2015. Cluster analysis to select peanut drought tolerance lines. Embrapa Algodão-Artigo em Periódico Indexado 9: 1095–1105.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

MB defined the research theme and led this study with input on analytical approaches. SO and MIC performed the experiments and contributed to phenotyping. ARC, CB and SO performed statistical analyses. All authors contributed to the results interpretation, as well as manuscript preparation.

Corresponding author

Correspondence to Santiago Ostengo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ostengo, S., Rueda Calderón, M.A., Bruno, C. et al. A Protocol for Identifying Characteristic Sucrose Accumulation Curves of Sugarcane Genotypes (Saccharum spp.). Sugar Tech (2021). https://doi.org/10.1007/s12355-020-00926-8

Download citation

Keywords

  • Accumulation curves
  • Nonlinear models
  • Cluster analysis
  • Variance components