The Effects of NH4+ and NO3 and Plant Growth Regulators on the Accumulation of Nutrients, Carbohydrates and Secondary Metabolites of Stevia rebaudiana Bertoni

Abstract

The main objective of this 2-year study was to investigate the effects of nitrogen resources (nitrogen-free, NO3, NH4+, and NH4NO3 each 150% in modified Hoagland solution) and plant growth regulators (PGR-free (6-Benzylaminopurine (BAP, 200 µM), 1-Naphthaleneacetic acid (NAA, 200 µM) and BAP + NAA each one 200 µM) on the absorption and transmission of elements from root to leaves and also study the biosynthesis of steviol glycosides in stevia leaves. The results demonstrated that the highest absorption of nutrient elements including nitrogen, phosphorus, potassium and calcium was observed in the plant cultivated under NO3 and NAA treatment. However, the combination of NH4NO3 and BAP significantly increased the steviol glycosides more than that of other treatments. This suggests that stevia requires low amounts of nutrient uptake for the biosynthesis of steviol glycosides. The results also showed that the levels of free carbohydrate and starch were increased in root and leaf under NO3 and with BAP + NAA treatments. An increase in free carbohydrate biosynthesis and transferring it to the root is completely vital to prevent sodium uptake and assist in the absorption of essential nutrients. These results suggest that the application of NO3 could increase the nutrient uptake whereas the optimal uptake of the essential elements and the highest amounts of steviol glycosides occur in the treatment of NH4NO3 along with BAP.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abyari, M., N. Nasr, J. Soorni, and D. Sadhu. 2016. Enhanced accumulation of scopoletin in cell suspension culture of Spilanthes acmella murr. Using precursor feeding. Brazilian Archives of Biology and Technology 59: 1–7. https://doi.org/10.1590/1678-4324-2016150533.

    CAS  Article  Google Scholar 

  2. Akbari, F., A. Arminian, D. Kahrizi, A. Fazeli, and M. Ghaheri. 2018. Effect of nitrogen sources on gene expression of Stevia rebaudiana (Bertoni) under in vitro conditions. Cellular and Molecular Biology 64 (2): 11–16.

    Article  Google Scholar 

  3. Benhmimou, A., M. Ibriz, A. Douaik, M. Lage, and C.A. Faïz. 2018. Effect of NPK fertilization on the growth, yield, quality and mineral nutrition of new sweet plant in morocco (Stevia rebaudiana Bertoni). American Journal of Biology and Life Sciences 6: 36–43.

    Google Scholar 

  4. Bielach, A., F. Perrine-Walker, K. Malinska, G. Krouk, E. Mounier, K. Hoyerova, P. Tillard, et al. 2010. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Developmental Cell. https://doi.org/10.1016/j.devcel.2010.05.008.

    Article  PubMed  Google Scholar 

  5. Ceunen, S., and J.M. Geuns. 2013. Steviol glycosides: Chemical diversity, metabolism, and function. Journal of Natural Products 76: 1201–1228. https://doi.org/10.1021/np400203b.

    CAS  Article  PubMed  Google Scholar 

  6. Claussen, M., H. Liithen, and M. Blatt. 1997. Auxin-induced growth and its linkage to potassium channels. Planta 201: 2227–2234.

    Article  Google Scholar 

  7. Esmaeili, F., D. Kahrizi, M. Mansouri, K. Yari, N. Kazemi, and M. Ghaheri. 2016. Cell dedifferentiation in Stevia rebauiana as a pharmaceutical and medicinal plant. Journal of Reports in Pharmaceutical Sciences 5: 12–17.

    CAS  Google Scholar 

  8. Fakhrul, R.H., J.S. Norrizah, S.S. Jaapar, and S. Noor Anilizawatima. 2014. The effect of potassium concentrations on the growth and development of Stevia rebaudiana (Bertoni) and production of Stevioside and Rebaudioside A. American-Eurasian Journal of Sustainable Agriculture 8: 42–51.

    Google Scholar 

  9. Fallah, F., F. Nokhasi, M. Ghaheri, D. Kahrizi, A. Beheshti Ale Agha, T. Ghorbani, E. Kazemi, and Z. Ansarypour. 2017. Effect of salinity on gene expression, morphological and biochemical characteristics of Stevia rebaudiana Bertoni under in vitro conditions. Cellular and Molecular Biology 63: 102–106. https://doi.org/10.14715/cmb/2017.63.7.17.

    CAS  Article  PubMed  Google Scholar 

  10. Gasmalla, M.A.A., R. Yang, and X. Hua. 2014. Stevia rebaudiana Bertoni: An alternative sugar replacer and its application in food industry. Food Engineering Reviews. https://doi.org/10.1007/s12393-014-9080-0.

    Article  Google Scholar 

  11. Ghaheri, M., D. Kahrizi, G. Bahrami, and H.R. Mohammadi-Motlagh. 2019. Study of gene expression and steviol glycosides accumulation in Stevia rebaudiana Bertoni under various mannitol concentrations. Molecular Biology Reports 46: 7–16. https://doi.org/10.1007/s11033-018-4250-4.

    CAS  Article  PubMed  Google Scholar 

  12. Grzyb, M. 2017. The content of endogenous hormones and sugars in the process of early somatic embryogenesis in the tree fern Cyathea delgadii. Plant Cell, Tissue and Organ Culture (PCTOC) 129: 387–397. https://doi.org/10.1007/s11240-017-1185-8.

    CAS  Article  Google Scholar 

  13. Gu, J., Z. Li, Y. Mao, P.C. Struik, H. Zhang, L. Liu, and Z. Wang. 2018. Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. Plant Science 274: 320–331. https://doi.org/10.1016/j.plantsci.2018.06.010.

    CAS  Article  PubMed  Google Scholar 

  14. Hachiya, T., and H. Sakakibara. 2016. Interactions between nitrate and ammonium in their uptake, allocation, assimilation, and signaling in plants. Journal of Experimental Botany. https://doi.org/10.1093/jxb/erw449.

    Article  Google Scholar 

  15. Halder, M., J.C. Joardar, and S. Amin. 2015. Potassium, calcium and sodium distribution in different part of common egetable plants grown under field condition. Research Journal of Soil Biology 7: 91–97. https://doi.org/10.3923/rjsb.2015.91.97.

    Article  Google Scholar 

  16. Hasegawa, P.M. 2013. Sodium (Na+) homeostasis and salt tolerance of plants. Environmental and Experimental Botany 92: 19–31. https://doi.org/10.1016/j.envexpbot.2013.03.001.

    CAS  Article  Google Scholar 

  17. Havre, Gustav N. 1961. The flame photometric determination of sodium, potassium and calcium in plant extracts with special reference to interference effects. Analytica Chimica Acta 25: 557–566.

    CAS  Article  Google Scholar 

  18. Kahrizi, D., S.M. Ghari, M. Ghaheri, F. Fallah, T. Ghorbani, A. Beheshti Ale Agha, E. Kazemi, and Z. Ansarypour. 2017. Effect of KH2PO4 on gene expression, morphological and biochemical characteristics of Stevia rebaudiana Bertoni under in vitro conditions. Cellular and Molecular Biology 63: 107. https://doi.org/10.14715/cmb/2017.63.7.18.

    CAS  Article  PubMed  Google Scholar 

  19. Kaya, C., A.L. Tuna, and A.M. Okant. 2010. Effect of foliar applied kinetin and indole acetic acid on maize plants grown under saline conditions. Turkish Journal of Agriculture and Forestry 34: 529–538. https://doi.org/10.3906/tar-0906-173.

    CAS  Article  Google Scholar 

  20. Keisham, M., S. Mukherjee, and S.C. Bhatla. 2018. Mechanisms of sodium transport in plants—Progresses and challenges. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms19030647.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Khiraoui, A., M. Bakha, F. Amchra, S. Ourouadi, A. Boulli, C. Al-Faiz, and A. Hasib. 2017. Nutritional and biochemical properties of natural sweeteners of six cultivars of Stevia rebaudiana Bertoni leaves grown in Morocco. Journal of Materials and Environmental Science 8: 1015–1022.

    CAS  Google Scholar 

  22. Kiba, T., A. Krapp, and R. Science. 2016. Plant nitrogen acquisition under low availability: Regulation of uptake and root architecture special focus issue-mini review. Plant and Cell Physiology 57: 707–714. https://doi.org/10.1093/pcp/pcw052.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Kiba, T., T. Kudo, M. Kojima, and H. Sakakibara. 2011. Hormonal control of nitrogen acquisition: Roles of auxin, abscisic acid, and cytokinin. Journal of Experimental Botany 62: 1399–1409. https://doi.org/10.1093/jxb/erq410.

    CAS  Article  PubMed  Google Scholar 

  24. Kieber, J.J., and G.E. Schaller. 2018. Cytokinin signaling in plant development. The Company of Biologists Ltd. https://doi.org/10.1242/dev.149344.

    Article  Google Scholar 

  25. Kumari, N., Y.P. Sharma, and S. Kumar. 2017. Extraction, purification and analysis of sweet compounds in Stevia rebaudiana Bertoni using chromatographic techniques. Indian Journal of Pharmaceutical Sciences 7: 617–624. https://doi.org/10.4172/pharmaceutical-sciences.1000270.

    Article  Google Scholar 

  26. Lastra, O.C. 2003. Derivative spectrophotometric determination of nitrate in plant tissue. Journal of AOAC International 86: 1101–1105.

    CAS  Article  Google Scholar 

  27. Liu, Y., Y. Fang, M. Huang, Y. Jin, J. Sun, and X. Tao. 2015. Uniconazole-induced starch accumulation in the bioenergy crop duckweed (Landoltia punctata) II: Transcriptome alterations of pathways involved in carbohydrate metabolism and endogenous hormone crosstalk. Biotechnology for Biofuels 8, 64. https://doi.org/10.1186/s13068-015-0245-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Maniruzzaman, M., M.A.H. Chowdhury, K. Mohiuddin, and T. Chowdhury. 2016. Nitrogen requirement and critical N content of stevia grown in two contrasting soils of Bangladesh. Research in Agriculture Livestock and Fisheries 3: 87–97.

    Article  Google Scholar 

  29. Marschner, P. 2012. Mineral nutrition of higher plants, 3rd ed. London: Academic Press.

    Google Scholar 

  30. Mejía-espejel, L., R. Alejandrina, L. Edmundo, P. Cecilia Beatriz, and A.C. José. 2018. Elicitors on steviosides production in Stevia rebaudiana Bertoni calli. Scientia Horticulturae 242: 95–102. https://doi.org/10.1016/j.scienta.2018.07.023.

    CAS  Article  Google Scholar 

  31. Mills, H.A., and J.B. Jones. 1997. Plant analysis handbook II: A practical sampling, preparation, analysis, and interpretation guide, 2nd ed. Athens, GA: MicroMacro Publishing.

    Google Scholar 

  32. Murphy, J., and J. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36.

    CAS  Article  Google Scholar 

  33. Ohyama, T. 2014. Nitrogen as a major essential element of plants, 1–17. Kerala: Research Signpost.

    Google Scholar 

  34. Pal, P.K., R. Kumar, V. Guleria, M. Mahajan, R. Prasad, V. Pathania, B.S. Gill, et al. 2015. Crop-ecology and nutritional variability influence growth and secondary metabolites of Stevia rebaudiana Bertoni. BMC Plant Biology 15 (67): 1–16. https://doi.org/10.1186/s12870-015-0457-x.

    CAS  Article  Google Scholar 

  35. Pistocchi, R., F. Guerrini, V. Balboni, and L. Boni. 2018. Copper toxicity and carbohydrate production in the microalgae Cylindrotheca fusiformis and Gymnodinium sp. European Journal of Pharmacology 32: 125–132.

    Google Scholar 

  36. Roche, J., J. Love, Q. Guo, J. Song, M. Cao, and K. Fraser. 2016. Metabolic changes and associated cytokinin signals in response to nitrate assimilation in roots and shoots of Lolium perenne. Physiologia Plantarum. https://doi.org/10.1111/ppl.12412.

    Article  PubMed  Google Scholar 

  37. Romero-Rodrıguez, A., N. Maldonado-Carmona, B. Ruiz-Villafan, N. Koirala, D. Rocha, and S. Sa. 2018. Interplay between carbon, nitrogen and phosphate utilization in the control of secondary metabolite production in Streptomyces. Antonie van Leeuwenhoek 111: 761–781. https://doi.org/10.1007/s10482-018-1073-1.

    CAS  Article  PubMed  Google Scholar 

  38. Ruffel, S., A. Gojon, and L. Lejay. 2014. Signal interactions in the regulation of root nitrate uptake. Journal of Experimental Botany. https://doi.org/10.1093/jxb/eru321.

    Article  PubMed  Google Scholar 

  39. Saeedipour, S., and F. Moradi. 2012. Relationship of endogenous ABA and IAA to accumulation of grain protein and starch in two winter wheat cultivars under post-anthesis water deficit. Journal of Agricultural Science 4: 147–156. https://doi.org/10.5539/jas.v4n2p147.

    Article  Google Scholar 

  40. Sayre, R. 2015. Impacts of high ATP supply from chloroplasts and mitochondria on the leaf metabolism of Arabidopsis thaliana. Frontiers in Microbiology 6: 1–17. https://doi.org/10.3389/fpls.2015.00922.

    Article  Google Scholar 

  41. Shen, C., R. Yue, Y. Yang, L. Zhang, T. Sun, and S. Tie. 2014. OsARF16 is involved in cytokinin-mediated inhibition of phosphate transport and phosphate signaling in rice (Oryza sativa L.). PLoS ONE 9: 3–12. https://doi.org/10.1371/journal.pone.0112906.

    CAS  Article  Google Scholar 

  42. Smet, D., and G. Promise. 2018. Releasing the cytokinin brakes on root growth. Plant Physiology 177: 865–866. https://doi.org/10.1104/pp.18.00660.

    CAS  Article  Google Scholar 

  43. Song, W., J. Li, and H. Sun. 2013. Increased photosynthetic capacity in response to nitrate is correlated with enhanced cytokinin levels in rice cultivar with high responsiveness to nitrogen nutrients. Plant and Soil. https://doi.org/10.1007/s11104-013-1867-x.

    Article  Google Scholar 

  44. Takei, K., N. Ueda, K. Aoki, T. Kuromori, T. Hirayama, K. Shinozaki, T. Yamaya, and H. Sakakibara. 2004. AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis. Plant Cell Physiology 48: 1053–1062. https://doi.org/10.1093/pcp/pch119.

    Article  Google Scholar 

  45. Tavakoli, H., N. Tavakoli, and F. Moradi. 2019. The effect of the elicitors on the steviol glycosides biosynthesis pathway in Stevia rebaudiana. Functional Plant Biology 46: 787–795. https://doi.org/10.1071/FP19014.

    CAS  Article  PubMed  Google Scholar 

  46. Vanneste, S., and J. Friml. 2013. Calcium: The missing link in auxin action. Plants. https://doi.org/10.3390/plants2040650.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Walker, D.J., P. Romero, A. de Hoyos, and E. Correal. 2008. Seasonal changes in cold tolerance, water relations and accumulation of cations and compatible solutes in Atriplex halimus L. Environmental and Experimental Botany 64: 217–224.

    CAS  Article  Google Scholar 

  48. Yang, Y., F. Wang, Q. Wan, and J. Ruan. 2018. Transcriptome analysis using RNA-Seq revealed the effects of nitrogen form on major secondary metabolite biosynthesis in tea (Camellia sinensis) plants. Acta Physiologiae Plantarum 40: 1–17. https://doi.org/10.1007/s11738-018-2701-0.

    CAS  Article  Google Scholar 

  49. Yin, S., Y. Liang, W. Gao, J. Wang, S. Jing, Y. Zhang, and H. Liu. 2013. Influence of medium salt strength and nitrogen source on biomass and metabolite accumulation in adventitious root cultures of Pseudostellaria heterophylla. Acta Physiologiae Plantarum 35: 2623–2628. https://doi.org/10.1007/s11738-013-1270-5.

    CAS  Article  Google Scholar 

  50. Yoneda, Y., H. Shimizu, H. Nakashima, J. Miyasaka, and K. Ohdoi. 2018. Effect of treatment with gibberellin, gibberellin biosynthesis inhibitor, and auxin on steviol glycoside content in Stevia rebaudiana Bertoni. Sugar Tech 20: 482–491. https://doi.org/10.1007/s12355-017-0561-3.

    Article  Google Scholar 

  51. Zaman, M.M., M.A.H. Chowdhury, and T. Chowdhury. 2016. Integrated effects of poultry manure and chemical fertilizer on the growth, leaf yield and stevioside content of stevia. Journal of the Bangladesh Agricultural University 13: 175–182. https://doi.org/10.3329/jbau.v13i2.28777.

    Article  Google Scholar 

  52. Zeng, J., A. Chen, D. Li, B. Yi, and W. Wu. 2013. Effects of salt stress on the growth, physiological responses, and glycoside contents of Stevia rebaudiana bertoni. Journal of Agricultural and Food Chemistry 61: 5720–5726. https://doi.org/10.1021/jf401237x.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Agricultural Biotechnology Research Institute of Iran (ABRII) (Grant No. 12-05-05-029-95027-950755).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Foad Moradi.

Ethics declarations

Conflict of interest

The author declares that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Supplementary material 2 (DOCX 21 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tavakoli Hasanaklou, H., Ebadi Khazineh Ghadim, A., Moradi, F. et al. The Effects of NH4+ and NO3 and Plant Growth Regulators on the Accumulation of Nutrients, Carbohydrates and Secondary Metabolites of Stevia rebaudiana Bertoni. Sugar Tech 23, 65–76 (2021). https://doi.org/10.1007/s12355-020-00875-2

Download citation

Keywords

  • Carbohydrate
  • Nutrient uptake
  • Root
  • Starch
  • Total steviol glycoside