Sugar Tech

, Volume 20, Issue 2, pp 212–219 | Cite as

High-Density Genetic Map Construction in Sugar Beet (Beta vulgaris L.) by High-Throughput Technology

  • Maoqian Wang
  • Yuhui Xu
  • Zedong Wu
  • Huazhong Wang
  • Hanguo Zhang
Research Article
  • 66 Downloads

Abstract

A saturated genetic map can greatly promote the efficiency of gene mapping and marker-assisted selection (MAS) in plants. In the present study, we constructed an ultra-dense genetic map based on an F1 population derived from a cross between 3a (high-yield, low-sugar, sterile, monogerm, diploid line) and 3b (low-yield, high-sugar, pollinated, polyembryonic, diploid line) using Specific-Locus Amplified Fragment sequencing (SLAF-seq) technology. A total of 201.10 million high-quality pair-end reads were generated by Illumina high-throughput sequencing and a total of 171,637 SLAFs were developed, of which 48,478 were polymorphic. Finally, 3287 polymorphic SLAFs were mapped into an ultra-dense genetic map containing nine linkage groups (LGs). These markers had average depths of 105.84-, 104.16-, and 9.03-fold in the male parent, female parent, and progeny, respectively. The genetic map spanned 1554.64 cM with an average distance of 0.47 cM between adjacent markers. There were on an average 365 markers per linkage group and marker numbers ranging from 214 on LG 1 to 513 on LG 7. This genetic map will make great improvement for fine mapping QTLs and MAS in sugar beet.

Keywords

High-throughput technology Specific length amplified fragment Genetic map Sugar beet 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31271780).

Author Contributions

HZ and HW designed the study and performed the experiments; MW, YX and ZW performed the experiments, analyzed the data, and wrote the manuscript.

Compliance with Ethical Standards

Conflicts of interest

The authors declare no conflicts of interest.

Supplementary material

12355_2017_550_MOESM1_ESM.tif (113 kb)
Supplementary material 1 (TIFF 113 kb)
12355_2017_550_MOESM2_ESM.tif (679 kb)
Supplementary material 2 (TIFF 679 kb)
12355_2017_550_MOESM3_ESM.tif (3.3 mb)
Supplementary material 3 (TIFF 3429 kb)
12355_2017_550_MOESM4_ESM.tif (2.1 mb)
Supplementary material 4 (TIFF 2141 kb)

References

  1. Altshuler, D., V.J. Pollara, C.R. Cowles, W.J. Van Etten, J. Baldwin, L. Linton, and E.S. Lander. 2000. An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 407: 513–516. doi: 10.1038/35035083.CrossRefPubMedGoogle Scholar
  2. Arumuganathan, K., and E. Earle. 1991. Nuclear DNA content of some important plant species. Plant Molecular Biology Reporter 9: 208–218. doi: 10.1007/BF02672069.CrossRefGoogle Scholar
  3. Barzen, E., W. Mechelke, E. Ritter, E. Schulte-Kappert, and F. Salamini. 1995. An extended map of the sugar beet genome containing RFLP and RAPD loci. Theoretical and Applied Genetics 90: 189–193. doi: 10.1007/BF00222201.CrossRefPubMedGoogle Scholar
  4. Barzen, E., W. Mechelke, E. Ritter, J.F. Seitzer, and F. Salamini. 1992. RFLP markers for sugar beet breeding: chromosomal linkage maps and location of major genes for rhizomania resistance, monogermy and hypocotyl colour. Plant Journal 2: 601–611. doi: 10.1111/j.1365-313X.1992.00601.x.CrossRefGoogle Scholar
  5. Baxter, S.W., J.W. Davey, J.S. Johnston, A.M. Shelton, D.G. Heckel, C.D. Jiggins, and M.L. Blaxter. 2011. Linkage mapping and comparative genomics using next-generation RAD sequencing of a non-model organism. PLoS ONE 6: e19315. doi: 10.1371/journal.pone.0019315.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chen, S., Z. Huang, Y. Dai, S. Qin, Y. Gao, L. Zhang, Y. Gao, and J. Chen. 2013. The development of 7E chromosome-specific molecular markers for Thinopyrum elongatum based on SLAF-seq technology. PLoS ONE 8: e65122. doi: 10.1371/journal.pone.0065122.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chutimanitsakun, Y., R.W. Nipper, A. Cuesta-Marcos, L. Cistué, A. Corey, T. Filichkina, E.A. Johnson, and P.M. Hayes. 2011. Construction and application for QTL analysis of a restriction site associated DNA (RAD) linkage map in barley. BMC Genomics 12: 4. doi: 10.1186/1471-2164-12-4.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Davey, J.W., P.A. Hohenlohe, P.D. Etter, J.Q. Boone, J.M. Catchen, and M.L. Blaxter. 2011. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews Genetics 12: 499–510. doi: 10.1038/nrg3012.CrossRefPubMedGoogle Scholar
  9. Dohm, J.C., A.E. Minoche, D. Holtgräwe, S. Capella-Gutiérrez, F. Zakrzewski, H. Tafer, O. Rupp, T.R. Sörensen, R. Stracke, R. Reinhardt, A. Goesmann, T. Kraft, B. Schulz, P.F. Stadler, T. Schmidt, T. Gabaldón, H. Lehrach, B. Weisshaar, and H. Himmelbauer. 2014. The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 505: 546–549. doi: 10.1038/nature12817.CrossRefPubMedGoogle Scholar
  10. Grimmer, M.K., S. Trybush, S. Hanley, S.A. Francis, A. Karp, and M.J.C. Asher. 2007. An anchored linkage map for sugar beet based on AFLP, SNP and RAPD markers and QTL mapping of a new source of resistance to beet necrotic yellow vein virus. Theoretical and Applied Genetics 114: 1151–1160. doi: 10.1007/s00122-007-0507-3.CrossRefPubMedGoogle Scholar
  11. Guo, Y., G. Shi, Z. Liu, Y. Zhao, X. Yang, J. Zhu, K. Li, and X. Guo. 2015. Using specific length amplified fragment sequencing to construct the high-density genetic map for Vitis (Vitisvinifera L. × VitisamurensisRupr.). Frontiers. Plant Science 6: 393. doi: 10.3389/fpls.2015.00393.Google Scholar
  12. Halldén, C., A. Hjerdin, I.M. Rading, B. Fridlundh, G. Johannisdottir, S. Tuvesson, C. Akesson, T. Säll, and N.O. Nilsson. 1996. A high density RFLP linkage map of sugar beet. Genome 39: 634–645. doi: 10.1139/g96-081.CrossRefPubMedGoogle Scholar
  13. Holtgräwe, D., T.R. Sörensen, P. Viehöver, J. Schneider, B. Schulz, D. Borchardt, T. Kraft, H. Himmelbauer, and B. Weisshaar. 2014. Reliable in silico identification of sequence polymorphisms and their application for extending the genetic map of sugar beet (Beta vulgaris). PLoS ONE 9: e110113. doi: 10.1371/journal.pone.0110113.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Huang, X., Y. Zhao, X. Wei, C. Li, A. Wang, Q. Zhao, W. Li, Y. Guo, L. Deng, C. Zhu, D. Fan, Y. Lu, Q. Weng, K. Liu, T. Zhou, Y. Jing, L. Si, G. Dong, T. Huang, T. Lu, Q. Feng, Q. Qian, J. Li, and B. Han. 2012. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature Genetics 44: 32–39. doi: 10.1038/ng.1018.CrossRefGoogle Scholar
  15. Hyten, D.L., S.B. Cannon, Q. Song, N. Weeks, E.W. Fickus, R.C. Shoemaker, J.E. Specht, A.D. Farmer, G.D. May, and P.B. Cregan. 2010. High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genomics 11: 38. doi: 10.1186/1471-2164-11-38.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kosambi, D.D. 1943. The estimation of map distances from recombination values. Annals of Eugenics 12: 172–175. doi: 10.1111/j.1469-1809.1943.tb02321.x.CrossRefGoogle Scholar
  17. Li, H., and R. Durbin. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25: 1754–1760. doi: 10.1093/bioinformatics/btp324.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Liu, D., C. Ma, W. Hong, L. Huang, M. Liu, H. Liu, H. Zeng, D. Deng, H. Xin, J. Song, C. Xu, X. Sun, X. Hou, X. Wang, and H. Zheng. 2014. Construction and analysis of high-density linkage map using high-throughput sequencing data. PLoS ONE 9: e98855. doi: 10.1371/journal.pone.0098855.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Liu, T., L. Guo, Y. Pan, Q. Zhao, J. Wang, and Z. Song. 2016. Construction of the first high-density genetic linkage map of Salvia miltiorrhiza using specific length amplified fragment (SLAF) sequencing. Scientific Reports 6: 24070. doi: 10.1038/srep24070.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lucito, R., M. Nakimura, J.A. West, Y. Han, K. Chin, K. Jensen, R. McCombie, J.W. Gray, and M. Wigler. 1998. Genetic analysis using genomic representations. Proceedings of the National Academy of Sciences of the United States of America 95: 4487–4492. doi: 10.1073/pnas.95.8.4487.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ma, J.Q., L. Huang, C.L. Ma, J.Q. Jin, C.F. Li, R.K. Wang, H.K. Zheng, M.Z. Yao, and L. Chen. 2015. Large-scale SNP discovery and genotyping for constructing a high-density genetic map of tea plant using specific-locus amplified fragment sequencing (SLAF-seq). PLoS ONE 10: e0128798. doi: 10.1371/journal.pone.0128798.CrossRefPubMedPubMedCentralGoogle Scholar
  22. McGrath, J.M., D. Trebbi, A. Fenwick, and L. Panella. 2007. An open-source first-generation molecular genetic map from a sugar beet × table beet cross and its extension to physical mapping. Crop Science 47: 27–44. doi: 10.2135/cropsci2006-05-0339tpg.CrossRefGoogle Scholar
  23. Pfender, W.F., M.C. Saha, E.A. Johnson, and M.B. Slabaugh. 2011. Mapping with RAD (restriction-site associated DNA) markers to rapidly identify QTL for stem rust resistance in Lolium perenne. Theoretical and Applied Genetics 122: 1467–1480. doi: 10.1007/s00122-011-1546-3.CrossRefPubMedGoogle Scholar
  24. Pillen, K., G. Steinrücken, G. Wricke, R.G. Herrmann, and C. Jung. 1992. A linkage map of sugar beet (Beta vulgaris L.). Theoretical and Applied Genetics 84: 129–135.CrossRefPubMedGoogle Scholar
  25. Pillen, K., G. Steinrücken, R.G. Herrmann, and C. Jung. 1993. An extended linkage map of sugar beet (Beta vulgaris L.) including nine putative lethal genes and the restorer gene X. Plant Breed 111: 265–272.CrossRefGoogle Scholar
  26. Poland, J.A., P.J. Brown, M.E. Sorrells, and J.-L. Jannink. 2012. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7: e32253. doi: 10.1371/journal.pone.0032253.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Schneider, K., R. Schäfer-Pregl, C. Borchardt, and F. Salamini. 2002. Mapping QTLs for sucrose content, yield and quality in a sugar beet population fingerprinted by EST-related markers. Theoretical and Applied Genetics 104: 1107–1113. doi: 10.1007/s00122-002-0890-8.CrossRefPubMedGoogle Scholar
  28. Sun, X., D. Liu, X. Zhang, W. Li, H. Liu, W. Hong, C. Jiang, N. Guan, C. Ma, H. Zeng, C. Xu, J. Song, L. Huang, C. Wang, J. Shi, R. Wang, X. Zheng, C. Lu, X. Wang, and H. Zheng. 2013. SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE 8: e58700. doi: 10.1371/journal.pone.0058700.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Van Ooijen, J.W. 2011. Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genetics Research 93: 343–349. doi: 10.1017/S0016672311000279.CrossRefGoogle Scholar
  30. van Os, H., P. Stam, R.G.F. Visser, and H.J. van Eck. 2005. Smooth: A statistical method for successful removal of genotyping errors from high-density genetic linkage data. Theoretical and Applied Genetics 112: 187–194. doi: 10.1007/s00122-005-0124-y.CrossRefPubMedGoogle Scholar
  31. Van Tassell, C.P., T.P.L. Smith, L.K. Matukumalli, J.F. Taylor, R.D. Schnabel, C.T. Lawley, C.D. Haudenschild, S.S. Moore, W.C. Warren, and T.S. Sonstegard. 2008. SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nature Methods 5: 247–252. doi: 10.1038/nmeth.1185.CrossRefPubMedGoogle Scholar
  32. Wagner, H., W.E. Weber, and G. Wricke. 1992. Estimating linkage relationship of isozyme markers and morphological markers in sugar beet (Beta vulgaris L.) including families with distorted segregations. Plant Breeding 108: 89–96.CrossRefGoogle Scholar
  33. Wang, M.Q., B. Li, and H.Z. Wang. 2014. Construction of molecular genetic linkage map of sugarbeet. Acta Agronomica Sinica 40: 222–230. doi: 10.3724/SP.J.1006.2014.00222.CrossRefGoogle Scholar
  34. West, M.A., H. van Leeuwen, A. Kozik, D.J. Kliebenstein, R.W. Doerge, D.A. St Clair, and R.W. Michelmore. 2006. High-density haplotyping with microarray-based expression and single feature polymorphism markers in Arabidopsis. Genome Research 16: 787–795. doi: 10.1101/gr.5011206.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Zhang, Y., L. Wang, H. Xin, D. Li, C. Ma, X. Ding, W. Hong, and X. Zhang. 2013. Construction of a high-density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Plant Biology 13: 141. doi: 10.1186/1471-2229-13-141.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Society for Sugar Research & Promotion 2017

Authors and Affiliations

  • Maoqian Wang
    • 1
    • 2
    • 3
  • Yuhui Xu
    • 4
  • Zedong Wu
    • 2
    • 3
  • Huazhong Wang
    • 2
    • 3
  • Hanguo Zhang
    • 1
  1. 1.State Key Laboratory of Forest Tree Genetics and Breeding, Forestry CollegeNortheast Forestry UniversityHarbinChina
  2. 2.Key Laboratory of Sugar Beet Genetic BreedingRegular Institution of Higher Learning in Heilongjiang Province/Heilongjiang UniversityHarbinChina
  3. 3.Sugar Beet InstituteChinese Academy of Agricultural SciencesHarbinChina
  4. 4.Biomarker Technologies CorporationBeijingPeople’s Republic of China

Personalised recommendations