Skip to main content

Advertisement

Log in

Utilization of Sugarcane Field Residue (SFR) as Renewable Feedstock for Biobutanol Production

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Due to its hydrophobicity and high energy yielding, butanol emerged as an important industrial solvent and superior liquid fuel with a potential to replace gasoline. The economic production of butanol is mainly depending on raw material cost. Thus, the development of butanol production process using renewable energy sources such as lignocellulosic crop residues has gained interest. In the present study, production of butanol from sugarcane field residue (SFR) was carried using newly isolated solventogenic Clostridium beijerinckii YVU1. SFR is one of the abundant lignocellulosic potential substrate available in the tropical world. SFR contains 40.3 ± 3.5% cellulose, 28.5 ± 3.0% hemicellulose and 20.3 ± 2.6% lignin. The sequential dilute alkali and acid pretreatment was solubilized around 69% of lignin and 73% of hemicellulose. Ten percent (w/v) of pretreated substrate was subjected to enzymatic saccharification with cellulase, and it released 0.681 ± 0.041 g of glucose/g of pretreated biomass. In the batch fermentation process, 22.8 g/l ABE with 16.5 g/l of butanol, 4.8 g/l of acetone and 1.5 g/l of ethanol was obtained. The performed fermentation process yielded 0.41 g of ABE/g of hydrolysate with 0.16 g/l/h productivity. The current work presents the impact of sequential alkali and acid pretreatment on the enzymatic hydrolysis of SFR as well as its utilization for butanol production by newly isolated C. beijerinckii YVU1. The outcome of the present work could be useful for further development in utilization of various crop residues for economical butanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • APED. 2014. http://aped.in/agriexchange/India%20Production/India_Productions.aspx?cat=Agri.

  • Boopathy, R., B.R. Asrabadi, and T.G. Ferguson. 2002. Sugar cane (Saccharum officinarum L) burning and asthma in Southeast Louisiana, USA. Bulletin of Environmental Contamination and Toxicology 68: 173–179.

    CAS  PubMed  Google Scholar 

  • Dawson, L., and R. Boopathy. 2007. Use of post-harvest sugarcane residue for ethanol production. Bioresource Technology 98: 1695–1699.

    Article  CAS  PubMed  Google Scholar 

  • Dürre, P. 2007. Biobutanol: An attractive biofuel. Biotechnology Journal 2: 1525–1534.

    Article  PubMed  Google Scholar 

  • Ezeji, T., and H.P. Blaschek. 2008. Fermentation of dried distillers’ grains and soluble (DDGS) hydrolysates to solvents and value-added products by solventogenic clostridia. Bioresource Technology 99: 5232–5242.

    Article  CAS  PubMed  Google Scholar 

  • Franco, H.C.J., M.T.B. Pimenta, J.L.N. Carvalho, P.S.G. Magalhães, C.E.V. Rossell, O.A. Braunbeck, A.C. Vitti, O.T. Kölln, and J.R. Neto. 2013. Assessment of sugarcane trash for agronomic and energy purposes in Brazil. Scientia Agricola 70: 305–312.

    Article  Google Scholar 

  • Han, L., J. Feng, S. Zhang, Z. Ma, Y. Wang, and X. Zhang. 2012. Alkali pretreated of wheat straw and its enzymatic hydrolysis. Brazilian Journal of Microbiology 43: 53–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiloidhari, M., D. Das, and D.C. Baruah. 2014. Bioenergy potential from crop residue biomass in India. Renewable and Sustainable Energy Reviewes 32: 504–512.

    Article  Google Scholar 

  • Jesse, T.W., T.C. Ezeji, N. Qureshi, and H.P. Blaschek. 2002. Production of butanol from starch-based waste packing peanuts and agricultural waste. Journal of Industrial Microbiology and Biotechnology 29: 117–123.

    Article  CAS  PubMed  Google Scholar 

  • John, Kuo. 2014. Processing plant tissues for ultrastructural study. In Electron Microscopy: Methods and protocols, ed. John Kuo. New York: Springer.

    Google Scholar 

  • Kerr, R.A., and R.F. Service. 2005. What can replace cheap oil—and when? Science 309: 101–104.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Z., Y. Ying, F. Li, C. Ma, and P. Xu. 2010. Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. Journal of Iindustrial Microbiology and Biotechnolology 37: 495–501.

    Article  CAS  Google Scholar 

  • Macedo, I.C., J.E.A. Seabra, and J.E.A.R. Silva. 2008. Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: 2005/2006 averages and a prediction for 2020. Biomass and Bioenergy 32: 582–595.

    Article  CAS  Google Scholar 

  • Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31: 426–428.

    Article  CAS  Google Scholar 

  • Nielsen, D.R., E. Leonard, S.H. Yoon, H.C. Tseng, C. Yuan, and K.L.J. Prather. 2009. Engineering alternative butanol production platforms in heterologous bacteria. Metabolic Engineering 11: 262–273.

    Article  CAS  PubMed  Google Scholar 

  • Pandey, A., S. Biswas, R.K. Sukumaran, and N. Kaushik. 2009. Study on availability of Indian biomass resources for exploitation: A report based on a nation-wise survey. TIFAC, New Delhi 105.

  • Qureshi, N., M.J. Bowman, B.C. Saha, R. Hector, M.A. Berhow, and M.A. Cotta. 2012. Effect of cellulosic sugar degradation products (furfural and hydroxymethyl furfural) on acetone–butanol–ethanol (ABE) fermentation using Clostridium beijerinckii P260. Food and Bioproducts Processing 90: 533–540.

    Article  CAS  Google Scholar 

  • Qureshi, N., T.C. Ezeji, J. Ebener, B.S. Dien, M.A. Cotta, and H.P. Blaschek. 2008. Butanol production by Clostridium beijerinckii. Part I: Use of acid and enzyme hydrolyzed corn fiber. Bioresource Technology 99: 5915–5922.

    Article  CAS  PubMed  Google Scholar 

  • Qureshi, N., B.C. Saha, B. Dien, R.E. Hector, and M.A. Cotta. 2010a. Production of butanol (a biofuel) from agricultural residues: Part I—Use of barley straw hydrolysate. Biomass and Bioenergy 34 (4): 559–565.

    Article  CAS  Google Scholar 

  • Qureshi, N., B.C. Saha, R.E. Hector, B. Dien, S. Hughes, S. Liu, L. Iten, M.J. Bowman, G. Sarath, and M.A. Cotta. 2010b. Production of butanol (a biofuel) from agricultural residues: Part II—Use of corn stover and switchgrass hydrolysates. Biomass and Bioenergy 34 (4): 566–571.

    Article  CAS  Google Scholar 

  • Ranjan, A., S. Khanna, and V.S. Moholkar. 2013. Feasibility of rice straw as alternate substrate for biobutanol production. Applied Energy 103: 32–38.

    Article  CAS  Google Scholar 

  • Schubert, C. 2006. Can biofuels finally take center stage? Nature Biotechnology 24: 777–784.

    Article  CAS  PubMed  Google Scholar 

  • Sindhu, R., P. Binod, K. Satyanagalakshmi, K.U. Janu, K.V. Sajna, N. Kurien, R.K. Sukumaran, and A. Pandey. 2010. Formic acid as a potential pretreatment agent for the conversion of sugarcane bagasse to bioethanol. Applied Biochemistry and Biotechnology 162: 2313–2323.

    Article  CAS  PubMed  Google Scholar 

  • Sindhu, R., M. Kuttiraja, P. Binod, K.U. Janu, R.K. Sukumaran, and A. Pandey. 2011. Dilute acid pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production. Bioresource Technology 102: 10915–10921.

    Article  CAS  PubMed  Google Scholar 

  • Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and D. Crocker. 2008. Determination of structural carbohydrates and lignin in biomass. Washington, DC: National Renewable Energy Laboratory-NREL.

    Google Scholar 

  • van der Wal, H., L.H.M. Sperber Bram, B. Houweling-Tan, R.R.C. Bakker, W. Brandenburg, and A.M. López-Contreras. 2013. Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca. Bioresource Technology 128: 431–437.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Department of Science and Technology (DST) and Council of Scientific and Industrial Research (CSIR), Government of India, for the financial support given in the form of a research Projects entitled “Biotechnological production of acetone–butanol–ethanol (ABE) from agricultural biomass using solventogenic bacteria” (Ref No.: SR/FT/LS-79/2009) and “Studies on Rapid and Enhanced Production of Ethanol through Very High Gravity (VHG) Fermentation” (Ref No.: 38 (1310)/11/EMR-II), respectively.

Author information

Authors and Affiliations

Authors

Contributions

ASV carried out the bench work and produced the results. LVR participated in the design of the study and writing of the manuscript. YJW conceived the study and participated in analyzing the results and correcting the manuscript.

Corresponding author

Correspondence to L. Veeranjaneya Reddy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, L.V., Veda, A.S. & Wee, Y.J. Utilization of Sugarcane Field Residue (SFR) as Renewable Feedstock for Biobutanol Production. Sugar Tech 20, 168–174 (2018). https://doi.org/10.1007/s12355-017-0546-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-017-0546-2

Keywords

Navigation