Sugar Tech

, Volume 19, Issue 6, pp 632–637 | Cite as

Use of secA Gene for Characterization of Phytoplasmas Associated with Sugarcane Grassy Shoot Disease in India

Research Article
  • 79 Downloads

Abstract

Surveys of commercial sugarcane varieties were conducted to the phytoplasma disease incidence in eight major sugarcane growing states of India (Uttarakhand, Uttar Pradesh, Maharashtra, Bihar, Assam, Chhattisgarh, Haryana and Tamil Nadu) during 2014–2015. Leaves from 24 symptomatic sugarcane plants of eight varieties showing grassy shoot and chlorosis symptoms, and of 8 non-symptomatic plants were collected and analyzed for phytoplasma presence using 16S rRNA and secA gene-specific primers. Amplification of 1.8- and 1.2-kb products using nested primers (P1/P7 and R16F2n/R16R2) of 16S rRNA gene and 880- and 480-bp products using secA gene-specific primer pairs (SecAfor1/SecArev3 and SecAfor2/SecArev3) was obtained for all the 24 symptomatic sugarcane samples. Pairwise sequence comparison, phylogenetic and in silico RFLP analysis of partial 16S rRNA and secA gene sequences of eight strains of sugarcane grassy shoot phytoplasma representative of the eight states confirmed the association of ‘Candidatus phytoplasma oryzae’-related strains (16SrXI-B) with symptomatic sugarcane varieties. The study confirmed that secA gene-specific primers could be employed for molecular characterization of phytoplasmas associated with sugarcane grassy shoot phytoplasmas belonging to 16SrXI group.

Keywords

Sugarcane phytoplasma 16S rRNA gene Phylogeny RFLP secA gene 

Supplementary material

12355_2017_541_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 15 kb)

References

  1. Ahrens, U., and E. Seemüller. 1992. Detection of DNA of plantpathogenic mycoplasma-like organisms by a polymerase chain reaction that amplifies a sequence of the 16S rRNA gene. Phytopathology 82: 828–832.CrossRefGoogle Scholar
  2. Al-Abadi, S.Y., M.A. Al-Sadi, M. Dickinson, M.S. Al-Hammadi, R. Al-Shariqi, R.A. Al-Yahyai, E.A. Kazerooni, and A. Bertaccini. 2016. Population genetic analysis reveals a low level of genetic diversity of ‘Candidatus phytoplasma aurantifolia’ causing witches’ broom disease in lime. SpringerPlus 5 (1): 1701.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bekele, B., S. Abeysinghe, T.X. Hoat, J. Hodgetts, and M. Dickinson. 2011. Development of specific secA-based diagnostics for the 16SrXI and 16SrXIV phytoplasmas of the Gramineae. Bulletin of Insectology 64: 15–16.Google Scholar
  4. Bila, J., A. Mondjana, B. Samils, and N. Högberg. 2015. High diversity, expanding populations and purifying selection in phytoplasmas causing coconut lethal yellowing in Mozambique. Plant Pathology 64 (3): 597–604.CrossRefGoogle Scholar
  5. Botti, S., and A. Bertaccini. 2003. Variability and functional role of chromosomal sequences in phytoplasmas of 16SrI-B subgroup (aster yellows and related strains). Journal of Applied Microbiology 94 (1): 103–110.CrossRefPubMedGoogle Scholar
  6. Deng, S., and C. Hiruki. 1991. Amplification of 16SrRNA genes from culturable and non-culturable mollicutes. Journal of Microbiological Methods 14: 53–61.CrossRefGoogle Scholar
  7. Gundersen, D.E., and I.-M. Lee. 1996. Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathologia Mediterranea 35: 144–151.Google Scholar
  8. Hodgetts, J., N. Boonham, R. Mumford, N. Harrison, and M. Dickinson. 2008. Phytoplasma phylogenetics based on analysis of secA and 23S rRNA gene sequences for improved resolution on candidate species of ‘Candidatus Phytoplasma’. International Journal of Systematic and Evolutionary Microbiology 58: 1826–1837.CrossRefPubMedGoogle Scholar
  9. Lee, I.-M., D.E. Gundersen, R.E. Davis, and I.-M. Bartoszyk. 1998. Revised classification scheme of phytoplasmas based on RFLP analysis of 16S rRNA and ribosomal protein gene sequences. International Journal of Systematic Bacteriology 48: 1153–1169.CrossRefGoogle Scholar
  10. Lee, I.-M., Y. Zhao, and K.D. Bottner. 2006. SecY gene sequence analysis for finer differentiation of diverse strains in the aster yellows phytoplasma group. Molecular and Cellular Probes 20 (2): 87–91.CrossRefPubMedGoogle Scholar
  11. Madhupriya, G.P. Rao, A. Kumar, and V.K. Baranwal. 2015. Classification of sesame phytoplasma strain in India at 16Sr subgroup level. Journal of Plant Pathology 3:523–528.Google Scholar
  12. Marcone, C. 2002. Phytoplasma disease of sugarcane. Sugar Tech 4: 79–85.CrossRefGoogle Scholar
  13. Marcone, C., A. Ragozzino, I. Camele, G.L. Rana, and E. Seemüller. 2001. Updating and extending genetic characterization and classification of phytoplasmas from wild and cultivated plants in southern Italy. Journal of Plant Pathology 83 (2): 133–138.Google Scholar
  14. Mehdi, A., V.K. Baranwal, M. KochuBabu, and D. Praveena. 2011. Sequence analysis of 16S rRNA and secA genes confirms the association of 16SrI-B subgroup phytoplasma with oil palm (Elaeisguineensis Jacq.) stunting disease in India. Journal of Phytopathology 160: 6–12.CrossRefGoogle Scholar
  15. Nabi, S., D.K. Madhupriya, G.P. Dubey, V.K.Baranwal Rao, and P. Sharma. 2015. Characterization of phytoplasmas associated with sesame (Sesamum indicum) phyllody disease in North India utilizing multi locus genes and RFLP analysis. Indian Phytopathology 68 (1): 112–119.Google Scholar
  16. Nasare, K., A. Yadav, A.K. Singh, K.B. Shivasharanappa, Y.S. Nerkar, and V.S. Reddy. 2007. Molecular and symptom analysis reveal the presence of new phytoplasmas associated with sugarcane grassy shoot disease in India. Plant Disease 91: 1413–1418.CrossRefGoogle Scholar
  17. Ramaswamy, M., S. Nair, V.P. Soumya, and G.V. Thomas. 2013. Phylogenetic analysis identifies a ‘Candidatus phytoplasma oryzae’-related strain associated with yellow leaf disease of areca palm (Areca catechu L.) in India. International Journal of Systematic and Evolutionary Microbiology 63: 1376–1382.CrossRefPubMedGoogle Scholar
  18. Rao, G.P., S. Srivastava, P.S. Gupta, A. Singh, M. Singh, and C. Marcone. 2008. Detection of sugarcane grassy shoot phytoplasma infecting sugarcane in India and its phylogenetic relationships to closely related phytoplasmas. Sugar Tech 10: 74–80.CrossRefGoogle Scholar
  19. Rao, G.P., S. Mall, and C. Marcone. 2012. Recent biotechnological approaches in diagnosis and management of sugarcane phytoplasma diseases. In Functional plant science and biotechnology, recent trends in biotechnology and microbiology, vol. 2, ed. A.R. Sundar, and R. Viswanathan, 19–29. New York: Global Science Books.Google Scholar
  20. Rao, G.P., A.K. Madhupriya, S.Kumar Tiwari, and V.K. Baranwal. 2014. Identification of sugarcane grassy shoot-associated phytoplasma and one of its putative vectors in India. Phytoparasitica 42: 349–354.CrossRefGoogle Scholar
  21. Rao, G.P., and M. Kumar. 2017. World status of phytoplasma diseases associated with eggplant. Crop Protection 96: 22–29.CrossRefGoogle Scholar
  22. Schneider, B.E., C.D.S. Seemüller, and B.C. Kirkpatrick. 1995. Phylogenetic classification of plant pathogenic mycoplasma like organisms or phytoplasmas. In Molecular and diagnostic procedures in mycoplasmology, vol. 2, ed. S. Raszin, and J.G. Tully, 369–380. New York: Academic Press.CrossRefGoogle Scholar
  23. Srivastava, S., V. Singh, P.S. Gupta, O.K. Sinha, and A. Baitha. 2006. Nested PCR assay for detection of sugarcane grassy shoot phytoplasma in the leafhopper vector Deltocephalus vulgaris: A first report. Plant Pathology 22: 25–32.CrossRefGoogle Scholar
  24. Shao, J., R. Jomantiene, E.L. Dally, Y. Zhao, I.-M. Lee, D.L. Nuss, and R.E. Davis. 2006. Phylogeny and characterization of phytoplasmal nusA and use of the nusA gene in detection of group 16SrI strains. Journal of Plant Pathology 88 (2): 193–201.Google Scholar
  25. Streten, C., and K.S. Gibb. 2005. Genetic variation in ‘Candidatus phytoplasma australiense’. Plant Pathology 54: 8–14.CrossRefGoogle Scholar
  26. Tamura, K., G. Stecher, D. Peterson, A. Filipski, and S. Kumar. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Thompson, J.D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTALW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties, and weight matrix choice. Nucleic Acids Research 22: 4673–4680.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Tiwari, A.K., S.K. Vishwakarma, and G.P. Rao. 2012. Increasing incidence of sugarcane grassy shoot disease in Uttar Pradesh, India and its impact on yield and quality of sugarcane. Phytopathogenic Mollicutes 2: 63–67.CrossRefGoogle Scholar
  29. Tiwari, A.K., V.K. Madhupriya, K.P. Srivastava, B.L.Sharma Pandey, and G.P. Rao. 2016. Detection of sugarcane grassy shoot phytoplasma (16SrXI-B subgroup) in Pyrilla perpusilla Walker in Uttar Pradesh, India. Phytopathogenic Mollicutes 6 (1): 56–59.CrossRefGoogle Scholar
  30. Tiwari, A.K., S. Kumar, S. Mall, V. Jadon, and G.P. Rao. 2017. New efficient natural leafhopper vectors of sugarcane grassy shoot phytoplasma in India. SugarTech 9 (2): 191–197.Google Scholar
  31. Valiunas, D., R. Jomantiene, A. Ivanauskas, I. Urbonaite, D. Sneideris, and R.E. Davis. 2015. Molecular identification of phytoplasmas infecting diseased pine trees in the UNESCO-protected curonian spit of Lithuania. Forests 6: 2469–2483.CrossRefGoogle Scholar
  32. Viswanathan, R., C. Chinnaraja, R. Karuppaiah, K.V. Ganesh, R.J.J. Jenshi, and P. Malathi. 2011. Genetic diversity of sugarcane grassy shoot (SCGS)-phytoplasmas causing grassy shoot disease in India. Sugar Tech 13: 220–228.CrossRefGoogle Scholar
  33. Wongkaew, P., Y. Hanboonsong, P. Sirithorn, C. Choosai, S. Boonkrong, T. Tinnangwattana, R. Kitchareonpanya, and S. Damak. 1997. Differentiation of phytoplasmas associated with sugarcane and gramineous weed white leaf disease and sugarcane grassy shoot disease by RFLP and sequencing. Theoretical and Applied Genetics 95: 660–663.CrossRefGoogle Scholar
  34. Wei, W., R.E. Davis, I.-M. Lee, and Y. Zhao. 2007. Computer simulated RFLP analysis of 16S rRNA genes: Identification of ten new phytoplasma groups. International Journal of Systematic and Evolutionary Microbiology 57: 1855–1867.CrossRefPubMedGoogle Scholar
  35. Yadav, A., V. Thorat, S. Deokule, Y. Shouche, and D.T. Prasad. 2016. New Subgroup 16SrXI-F phytoplasma strain associated with sugarcane grassy shoot (SCGS) disease in India. International Journal of Systematic and Evolutionary Microbiology. doi: 10.1099/ijsem.0.001635.PubMedGoogle Scholar
  36. Zhang, R.Y., W.F. Li, Y.K. Huang, X.Y. Wang, H.L. Shan, Z.M. Luo, and J. Yin. 2016. Group 16SrXI phytoplasma strains, including subgroup 16SrXI-B and a new subgroup, 16SrXI-D, are associated with sugar cane white leaf. International Journal of Systematic and Evolutionary Microbiology 66: 487–491.CrossRefPubMedGoogle Scholar

Copyright information

© Society for Sugar Research & Promotion 2017

Authors and Affiliations

  • Shailender Kumar
    • 1
  • Vikas Singh Jadon
    • 2
  • G. P. Rao
    • 1
  1. 1.Division of Plant PathologyIndian Agricultural Research InstituteNew DelhiIndia
  2. 2.Department of Biochemistry and BiotechnologySardar Bhagwan Singh Post Graduate Institute of Biomedical Science and ResearchBalawala, DehradunIndia

Personalised recommendations