Advertisement

Sugar Tech

, Volume 19, Issue 6, pp 604–615 | Cite as

Unraveling the Genetic Complexities in Gene Set of Sugarcane Red Rot Pathogen Colletotrichum falcatum Through Transcriptomic Approach

  • C. Naveen Prasanth
  • R. Viswanathan
  • Neethu Krishna
  • P. Malathi
  • A. Ramesh Sundar
  • Tanushree Tiwari
Research article

Abstract

The transcriptome-based gene set expression of a unique sugarcane stalk infecting fungal pathogen reveals novels insights in deciphering the class of pathogenicity genes present in Colletotrichum falcatum. This study gains significance in understanding the genetic signature of this pathogen using RNA-Seq technology. A total of 53,410,513 reads (24,732 transcripts) specific to C. falcatum were generated, and 13,320 genes were predicted. Gene ontology distributions have been grouped into three domains as biological (3053), cellular (1601) and molecular functions (3444). KEGG annotations represented pathway biomolecules such as carbohydrates, lipids, nucleotides, amino acids, glycans, cofactors, vitamins, terpenoids and polyketides. The genes for virulence have been classified and grouped into candidate effectors, transition-specific and secondary metabolites, proteases, transporters and peptidases which revealed that C. falcatum transcripts encode a large number of secondary metabolites and membrane transporters. Gene enrichment analysis revealed that the number of transporters encoded by C. falcatum is significantly more as compared to that encoded by several other Colletotrichum spp. Phylogenomics analysis indicated that C. falcatum is closely related to C. graminicola and C. sublineola infecting related host plants, maize and sorghum, respectively. This study provides a comprehensive understanding of C. falcatum pathobiology and has identified many candidate genes/putative functions possibly required for its pathogenesis .

Keywords

Colletotrichum falcatum Sugarcane RNA-Seq analysis 

Notes

Acknowledgements

The authors are grateful to the Director of ICAR-Sugarcane Breeding Institute, Coimbatore, for providing facilities and encouragement.

Funding

This study was partly funded by Outreach Project of ICAR, ALCOCERA.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Data Access

All data contributing to this transcriptome initiative have been deposited at the NCBI under BioProject PRJNA272832. The accession number of Sequence Read Achieves (SRA) is SRR1765657.

Supplementary material

12355_2017_529_MOESM1_ESM.docx (82 kb)
Supplementary material 1 (DOCX 82 kb)

References

  1. Baroncelli, R., J.M. Sanz-martín, G.E. Rech, S.A. Sukno, and M. Thon. 2014. Draft genome sequence of Colletotrichum sublineola a destructive pathogen of cultivated sorghum. Genome Announcement 2 (3): 10–11.CrossRefGoogle Scholar
  2. Cannon, P.F., U. Damm, P.R. Johnston, and B.S. Weir. 2012. Colletotrichum—Current status and future directions. Studies in Mycology 73: 181–213.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Cantarel, B.L., P.M. Coutinho, C. Rancurel, T. Bernard, V. Lombard, and B. Henrissat. 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Research 37: D233–D238.CrossRefPubMedGoogle Scholar
  4. Casado-Díaz, A., S. Encinas-Villarejo, B.D.L. Santos, E. Schilirò, E.M. Yubero Serrano, F. Amil Ruíz, and J.L. Caballero. 2006. Analysis of strawberry genes differentially expressed in response to Colletotrichum infection. Physiologia Plantarum 128: 633–650.CrossRefGoogle Scholar
  5. Damm, U., R. Barroncelli, L. Cai, Y. Kubo, R.J. O’Connell, B. Weir, K. Yoshino, and P.F. Cannon. 2010. Colletotrichum: Species, ecology and interactions. IMA Fungus 1 (2): 161–165.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Gan, P., K. Ikeda, H. Irieda, M. Narusaka, R.J. O’Connell, Y. Narusaka, and K. Shirasu. 2013. Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytologist 197: 1236–1249.CrossRefPubMedGoogle Scholar
  7. Houterman, P.M., B.J. Cornelissen, and M. Rep. 2008. Suppression of plant resistance gene-based immunity by a fungal effector. PLoS Pathogens 4: e1000061.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Jupe, J., R. Stam, A.J. Howden, J.A. Morris, R. Zhang, P.E. Hedley, and E. Huitema. 2013. Phytophthora capsici-tomato interaction features dramatic shifts in gene expression associated with a hemi-biotrophic lifestyle. Genome Biology 14: R63.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Kanehisa, M., and S. Goto. 2000. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research 28: 27–30.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Kanehisa, M., S. Goto, Y. Sato, M. Furumichi, and M. Tanabe. 2012. KEGG for integration and interpretation of large-scale molecular datasets. Nucleic Acids Research 40: D109–D114.CrossRefPubMedGoogle Scholar
  11. Kleemann, J., L.J. Rincon-Rivera, H. Takahara, U. Neumann, E.V.L. van Themaat, and R.J. O’Connell. 2012. Sequential delivery of host-induced virulence effectors by appressoria and intracellular hyphae of the phytopathogen Colletotrichum higginsianum. PLoS Pathogens 8 (4): e1002643.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Krogh, A., B. Larsson, G. von Heijne, and E.L. Sonnhammer. 2001. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology 305: 567–580.CrossRefPubMedGoogle Scholar
  13. Lister, R., B.D. Gregory, and J.R. Ecker. 2009. Next is now: New technologies for sequencing of genomes, transcriptomes, and beyond. Current Opinion in Plant Biology 12 (2): 107–118.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Malathi, P., R. Viswanathan, and R. Jothi. 2006. Specific adaptation of Colletotrichum falcatum pathotypes to sugarcane cultivars. Sugar Tech 8: 52–56.CrossRefGoogle Scholar
  15. Malathi, P., R. Viswanathan, A. Ramesh Sundar, N. Prakasam, P. Padmanaban, R. Jothi, S.R. Renuka Devi, and M. Poongothai. 2010. Variability among Colletotrichum falcatum pathotypes used for screening red rot resistance in sugarcane. Sugar Cane International 28 (2): 47–52.Google Scholar
  16. Mardis, E.R. 2013. Next-generation sequencing platforms. Annual Reviews of Analytical Chemistry 6 (1): 287–303.CrossRefGoogle Scholar
  17. McDowell, J.M. 2013. Genomic and transcriptomic insights into lifestyle transitions of a hemi-biotrophic fungal pathogen. New Phytologist 197: 1032–1034.CrossRefPubMedGoogle Scholar
  18. Meinhardt, L.W., G. Gilson, L. Costa, D.P.T. Thomazella, P. José, P.L. Teixeira, and B.A. Bailey. 2014. Genome and secretome analysis of the hemibiotrophic fungal pathogen Moniliophthora roreri, which causes frosty pod rot disease of cacao: Mechanisms of the biotrophic and necrotrophic phases. BMC Genomics 15: 164. doi: 10.1186/1471-2164-15-164.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Moriya, Y., M. Itoh, S. Okuda, A.C. Yoshizawa, and M. Kanehisa. 2007. KAAS: An automatic genome annotation and pathway reconstruction server. Nucleic Acids Research 35 (Suppl 2): 182–185.CrossRefGoogle Scholar
  20. Morozova, O., and M. Marra. 2008. Applications of next-generation sequencing technologies in functional genomics. Genomics 92: 255–264.CrossRefPubMedGoogle Scholar
  21. Münch, S., U. Lingner, D.S. Floss, N. Ludwig, N. Sauer, and H.B. Deising. 2008. The hemibiotrophic lifestyle of Colletotrichum species. Journal of Plant Physiology 165: 41–51.CrossRefPubMedGoogle Scholar
  22. O’Connell, R.J., M.R. Thon, S. Hacquard, S.G. Amyotte, J. Kleemann, M.F. Torres, and L.J. Vaillancourt. 2012. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nature Genetics 44: 1055–1060.Google Scholar
  23. Oh, Y., N. Donofrio, H. Pan, S. Coughlan, D. Brown, S. Meng, and R.A. Dean. 2000. Transcriptome analysis reveals new insight into appressorium formation and function in the rice blast fungus Magnaporthe oryzae. Genome Biology. doi: 10.1186/gb-2008-9-5-r85.Google Scholar
  24. Park, J., S. Lee, J. Choi, K. Ahn, B. Park, S. Kang, and Y.H. Lee. 2008. Fungal cytochrome P450 database. BMC Genomics 9: 402.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Petersen, T.N., S. Brunak, G. von Heijne, and H. Nielsen. 2011. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nature Methods 8: 785–786.CrossRefPubMedGoogle Scholar
  26. Punta, M., P.C. Coggill, R.Y. Eberhardt, J. Mistry, J. Tate, C. Boursnell, N. Pang, K. Forslund, G. Ceric, J. Clement, A. Heger, L. Holm, E.L. Sonnhammer, S.R. Eddy, A. Bateman, and R.D. Finn. 2012. The Pfam protein families database. Nucleic Acids Research 40: D290–D301.CrossRefPubMedGoogle Scholar
  27. Quevillon, E., V. Silventoinen, S. Pillai, N. Harte, N. Mulder, R. Apweiler, and R. Lopez. 2005. InterProScan: Protein domains identifier. Nucleic Acids Research 33: 6W116–6W120.CrossRefGoogle Scholar
  28. Rawlings, N.D., A.J. Barrett, and A. Bateman. 2012. MEROPS: The database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Research 40: D343–D350.CrossRefPubMedGoogle Scholar
  29. Schafer, W. 1994. Molecular mechanisms of fungal pathogenicity to plants. Annual Review of Phytopathology 32: 461–477.CrossRefGoogle Scholar
  30. Stephenson, S., C.M. Stephens, D.J. Maclean, and J.M. Manners. 2005. CgDN24: A gene involved in hyphal development in the fungal phytopathogen Colletotrichum gloeosporioides. Microbiological Research 160: 389–397.CrossRefPubMedGoogle Scholar
  31. Stergiopoulos, I., and P.J. de Wit. 2009. Fungal effector proteins. Annual Review of Phytopathology 47: 233–263.CrossRefPubMedGoogle Scholar
  32. Suman, A., S. Lal, A.K. Shasany, A. Gaur, and P. Singh. 2005. Molecular assessment of diversity among pathotypes of Colletotrichum falcatum prevalent in sub-tropical Indian sugarcane. World Journal of Microbiology and Biotechnology 21: 1135–1140.CrossRefGoogle Scholar
  33. Taniguti, L.M., P.D.C. Schaker, J. Benevenuto, L.P. Peters, G. Carvalho, A. Palhares, and C.B. Monteiro-Vitorello. 2015. Complete genome sequence of Sporisorium scitamineum and biotrophic interaction transcriptome with sugarcane. PLoS ONE 10 (6): e0129318. doi: 10.1371/journal.pone.0129318.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Thakur, K., V. Chawla, S. Bhatti, M.K. Swarnkar, J. Kaur, R. Shankar, and G. Jha. 2013. De novo transcriptome sequencing and analysis for Venturia inaequalis, the devastating apple scab pathogen. PLoS ONE. doi: 10.1371/journal.pone.0053937.Google Scholar
  35. Viswanathan, R. 2010. Plant disease: Red rot of sugarcane, 306. New Delhi: Anmol Publishers.Google Scholar
  36. Viswanathan, R., and G.P. Rao. 2011. Disease scenario and management of major sugarcane diseases in India. Sugar Tech 13: 336–353.CrossRefGoogle Scholar
  37. Viswanathan, R., and R. Samiyappan. 1999. Red rot disease in sugarcane: A major constraint for the Indian sugar industry. Sugar Cane 17: 9–15.Google Scholar
  38. Viswanathan, R., C.N. Prasanth, P. Malathi, and A.R. Sundar. 2016. Draft genome sequence of Colletotrichum falcatum—A prelude on screening of red rot pathogen in sugarcane. Journal of Genomics 4 (10): 1–3. doi: 10.7150/jgen.13585.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Wang, Z., M. Gerstein, and M. Snyder. 2009. RNA-Seq: A revolutionary tool for transcriptomics. Nature Reviews Genetics 10 (1): 57–63.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Wilhelm, B.T., and J.R. Landry. 2009. RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing. Nature Methods 48: 249–257.Google Scholar
  41. Wu, Q., L. Xu, J. Guo, Y. Su, and Y. Que. 2013. Transcriptome profile analysis of sugarcane responses to Sporisorium scitamineum infection using Solexa sequencing technology. BioMed Research International Article ID 298920.Google Scholar
  42. Zheng, P., Y. Xia, G. Xiao, C. Xiong, X. Hu, S. Zhang, H. Zheng, Y. Huang, Y. Zhou, S. Wang, G.P. Zhao, X. Liu, R.J. St Leger, and C. Wang. 2011. Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biology 12(11):R116. doi: 10.1186/gb-2011-12-11-r116.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Zhang, Y., K. Zhang, A. Fang, Y. Han, J. Yang, M. Xue, and W. Sun. 2014. Specific adaptation of Ustilaginoidea virens in occupying host florets revealed by comparative and functional genomics. Nature Communications 5: 3849. doi: 10.1038/ncomms4849.PubMedGoogle Scholar

Copyright information

© Society for Sugar Research & Promotion 2017

Authors and Affiliations

  • C. Naveen Prasanth
    • 1
  • R. Viswanathan
    • 1
  • Neethu Krishna
    • 2
  • P. Malathi
    • 1
  • A. Ramesh Sundar
    • 1
  • Tanushree Tiwari
    • 3
  1. 1.Division of Crop Protection, Sugarcane Breeding InstituteIndian Council of Agricultural ResearchCoimbatoreIndia
  2. 2.Indian Institute of Spices ResearchIndian Council of Agricultural ResearchCalicutIndia
  3. 3.Xcleris Genomics Pvt. Ltd.AhmadabadIndia

Personalised recommendations