Advertisement

Sugar Tech

, Volume 19, Issue 6, pp 563–572 | Cite as

Molecular Characterization of Pathogenicity Gene Homologs in Colletotrichum falcatum Causing Red Rot in Sugarcane

  • M. Scindiya
  • P. Malathi
  • K. Kaverinathan
  • R. Viswanathan
  • A. Ramesh Sundar
Research article

Abstract

Variation in Colletotrichum  falcatum causing red rot disease of sugarcane is well established at cultural, pathogenic and molecular level. However, limited information is available on genes responsible for pathogen virulence and its pathogenesis. To understand virulence in C. falcatum, detailed studies were taken up using phylogenetically differentiated two isolates viz., Cf671 and Cf92020 vary in their virulence with 28 pathogenicity gene homologs. Important pathogenicity  gene homologs  amplified were PKS1, SCD1, THR1, Cap5, Cap20, MAF1, Pg1, PG2, Pel1, Pel2, SSD1, APH1, ArpA, ICL1, RGT2, RAC1, CreA, HXT1 and HXT3. Characterization of gene  sequences of the selected pathogenicity genes from C. falcatum revealed both intra- and interspecific variation and comparison of genomic sources sequenced among two distinct isolates revealed a definite role of pathogenicity genes in C. falcatum pathogenesis. Differential expression of the pathogenicity gene homologs between isolates has been validated during host pathogen interaction.The present investigation identified the role of pathogenicity genes and their differential expression in C. falcatum pathogenesis for the first time. 

Keywords

Red rot Colletotrichum falcatum Pathogenicity gene homologs Virulence 

Notes

Acknowledgement

The authors are grateful to the Director, ICAR-Sugarcane Breeding Institute for providing facilities and constant encouragement.

Funding

This study was done as part of ICAR-SBI fund.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Asakura, M., T. Okuno, and Y. Takano. 2006. Multiple contributions of peroxisomal metabolic function to fungal pathogenicity in Colletotrichum lagenarium. Applied Environmental Microbiology 72: 6345–6354.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barhoom, S., M. Kupiec, X. Zhao, J.R. Xu, and A. Sharon. 2008. Functional characterization of CgCTR2, a putative vacuole copper transporter that is involved in germination and pathogenicity in Colletotrichum gloeosporioides. Eukaryotic Cell 7: 1098–1108.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Centis, S., B. Dumas, J. Fournier, M. Marolda, and M.T. EsquerreTugaye. 1996. Isolation and sequence analysis of Clpg1, a gene coding for an endopolygalacturonase of the phytopathogenic fungus Colletotrichum lindemuthianum. Gene 170: 125–129.CrossRefPubMedGoogle Scholar
  4. Deising, H.B., S. Werner, and M. Wernitz. 2000. The role of fungal appressoria in plant infection. Microbial Infection 2: 1631–1641.CrossRefGoogle Scholar
  5. Dufresne, M., S. Perfect, A.L. Pellier, J.A. Bailey, and I. Langin. 2000. A GAL4-like protein is involved in the switch between biotrophic and necrotrophic phases of the infection process of Colletotrichum lindemuthianum on common bean. Plant Cell 12: 1579–1589.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Goodwin, P.H., and G.Y. Chen. 2002. High expression of a sucrose non-fermenting (SNF1)-related protein kinase from Colletotrichum gloeosporioides f. sp. malvae is associated with penetration of Malva pusilla. FEMS Microbiology Letter 215: 169–174.CrossRefGoogle Scholar
  7. Howard, R.J., M.A. Ferrari, D.H. Roach, and N.P. Money. 1991. Penetration of hard substrates by a fungus employing enormous turgor pressures. Proceedings at National Academy of Science 88: 11281–11284.CrossRefGoogle Scholar
  8. Hwang, C.S., and P.E. Kolattukudy. 1995. Cloning of a gene expressed during appressorium formation by Colletotrichum gloeosporioides in virulence by disruption of this gene. Plant Cell 7: 183–193.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Idnurm, A., and B.J. Howlett. 2001. Pathogenicity genes of phytopathogenic fungi. Molecular Plant Pathology 2: 241–255.CrossRefPubMedGoogle Scholar
  10. Keon, J.P.R., R.J.W. Byrde, and R. Cooper. 1987. Some aspects of fungal enzymes that degrade plant cell walls. In Fungal Infection of Plants, ed. G.I. Pegg, and P.G. Ayers, 133–157. Cambridge: Cambridge University Press.Google Scholar
  11. Kojima, K., T. Kikuchi, Y. Takano, E. Oshiro, and T. Okuno. 2002. The mitogen-activated protein kinase gene MAF1 is essential for the early differentiation phase of appressorium formation in Colletotrichum lagenarium. Molecular Plant Microbe Interaction 15: 1268–1276.CrossRefGoogle Scholar
  12. Kubo, Y., Y. Takano, N. Endo, N. Yasuda, S. Tajima, and I. Furusawa. 1996. Cloning and structural analysis of the melanin biosynthesis gene SCD1 encoding scytalone dehydratase in Colletotrichum lagenarium. Applied Environmental Microbiology 62: 4340–4344.PubMedPubMedCentralGoogle Scholar
  13. Li, J.R., S.M. Jin, T. Hsiang, and P. Goodwin. 2001. A novel actin-related protein gene of Colletotrichum gloeosporioides f. sp malvae shows altered expression corresponding with spore production. FEMS Microbiology Letter 197: 209–214.CrossRefGoogle Scholar
  14. Lingner, U., S. Münch, H.B. Deising, and N. Sauer. 2011. Hexose transporters of a hemibiotrophic plant pathogen: Functional variations and regulatory differences at different stages of infection. Journal of Biological Chemistry 286 (23): 20913–20922.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Malathi, P., R. Viswanathan, and R. Jothi. 2006. Specific adaptation of Colletotrichum falcatum pathotypes to sugarcane cultivars. Sugar Tech 8 (1): 54–58.CrossRefGoogle Scholar
  16. Malathi, P., R. Viswanathan, A. Ramesh Sundar, N. Prakasam, P. Padmanaban, R. Jothi, S.R. Renuka Devi, and M. Poongothai. 2010. Variability among Colletotrichum falcatum pathotypes used for screening red rot resistance in sugarcane. Sugar Cane International 28: 47–52.Google Scholar
  17. Malathi, P., R. Viswanathan, A. Ramesh Sundar, P. Padmanaban, N. Prakasam, D. Mohanraj, and R. Jothi. 2011. Phylogenetic analysis of Colletotrichum falcatum isolates causing red rot in sugarcane. Journal of Sugarcane Research 1: 69–74.Google Scholar
  18. Malathi, P., and R. Viswanathan. 2012. Functional analysis of pathogenicity gene homolog in Colletotrichum falcatum. In Proceedings at 3rd international conference on bio India ICBI-2012, held at Vivekanandha college of Engineering for women Elayampalayam, Tiruchengode, March 9–10, pp. 42.Google Scholar
  19. Manners, J.M., S.A. Stephenson, C. He, and D.J. Maclean. 2000. Gene transfer and expression in Colletotrichum gloeosporioides causing anthracnose on stylosanthes. In Colletotrichum host specificity, pathology and host-pathogen interaction, ed. D. Prusky, S. Freeman, and M.B. Dickman, 180–194. MN: APSPress St. Paul., USA.Google Scholar
  20. Pellier, A.L., R. Lauge, C. Veneault-Fourrey, and T. Langin. 2003. CLNR1, the AREA/NIT2-like global nitrogen regulator of the plant fungal pathogen Colletotrichum lindemuthianum is required for the infection cycle. Molecular Microbiology 48: 635–655.CrossRefGoogle Scholar
  21. Perpetua, N.S., Y. Kubo, N. Yasuda, Y. Takano, and I. Furusawa. 1996. Cloning and characterization of a melanin biosynthetic THR1 reductase gene essential for appressorial penetration of Colletotrichum lagenarium. Molecular Plant Microbe Interaction 9: 323–329.CrossRefGoogle Scholar
  22. Saghai-Maroof, M.A., K.M. Soliman, R.A. Jorgensen, and R.W. Allard. 1984. Ribosomal DNA spacer-length polymorphism in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proceedings at National Academy of Science 81: 8014–8019.CrossRefGoogle Scholar
  23. Shih, J., Y.D. Wei, and P.H. Goodwin. 2000. A comparison of the pectate lyase genes, pel-1 and pel-2, of Colletotrichum gloeosporioides f. sp. malvae and the relationship between their expression in culture and during necrotrophic infection. Gene 243: 139–150.CrossRefPubMedGoogle Scholar
  24. Srinivasan, K.V., and N.R. Bhatt. 1961. Criteria for grading resistance of sugarcane varieties to red rot (Glomeralla tucumanensis). Current Science 30 (11): 425.Google Scholar
  25. Takano, Y., K. Komeda, K. Kojima, and T. Okuno. 2001. Proper regulation of cyclic AMP-dependent protein kinase is required for growth, conidiation, and appressorium function in the anthracnose fungus Colletotrichum lagenarium. Molecular Plant Microbe Interaction 14: 1149–1157.CrossRefGoogle Scholar
  26. Takano, Y., Y. Kubo, K. Shimizu, K. Mise, T. Okuno, and I. Furusawa. 1995. Structural analysis of pks1, a polyketide synthase gene involved in melanin biosynthesis in Colletotrichum lagenarium. Molecular Genetics 249: 162–167.CrossRefGoogle Scholar
  27. Takano, Y., Y. Kubo, C. Kawamura, T. Tsuge, and I. Furusawa. 1996. Complementation of an albino mutant (Pks–) of Colletotrichum lagenarium with Alternaria alternata ALM gene involved in melanin biosynthesis. (Abstr.) (In Japanese.) Annual Phytopathological Society of Japan 61: 617.Google Scholar
  28. Takano, Y., N. Takayanagi, H. Hori, Y. Ikeuchu, T. Suzuki, A. Kimura, and T. Okuno. 2006. A gene involved in modifying transfer RNA is required for fungal pathogenicity and stress tolerance of Colletotrichum lagenarium. Molecular Microbiology 60: 81–92.CrossRefPubMedGoogle Scholar
  29. Tanaka, S., K. Yamada, K. Yabumoto, S. Fuki, A. Huser, G. Tsuji, H. Koga, K. Dohi, M. Mori, R.T. Shiraishi O’Connell, and Y. Kubo. 2007. Saccharomyces cerevisiae SSD1 orthologues are essential for host infection by the ascomycete plant pathogens Colletotrichum lagenarium and Magnaporthe grisea. Molecular Microbiology 64: 1332–1349.CrossRefPubMedGoogle Scholar
  30. Viswanathan, R., P. Malathi, and P. Padmanaban. 2003. Variation in sugarcane red rot pathogen Colletotrichum falcatum Went. In Frontiers of Fungal Diversity in India, ed. G.P. Rao, C. Manoharachari, D.J. Bhat, R.C. Rajak, and T.N. Lakhanpal, 639–667. Lucknow: International Book Distributing Co.Google Scholar
  31. Wei, Y., J. Shih, J. Li, and P.H. Goodwin. 2002. Two pectin lyase genes, pnl1 and pnl2, from Colletotrichum gloeosporioides f. sp. malvae differ in a cellulose-binding domain and in their expression during infection of Malva pusilla. Microbiology 148: 2149–2157.CrossRefPubMedGoogle Scholar

Copyright information

© Society for Sugar Research & Promotion 2017

Authors and Affiliations

  • M. Scindiya
    • 1
  • P. Malathi
    • 1
  • K. Kaverinathan
    • 1
  • R. Viswanathan
    • 1
  • A. Ramesh Sundar
    • 1
  1. 1.Plant Pathology Section, Crop Protection DivisionICAR-Sugarcane Breeding InstituteCoimbatoreIndia

Personalised recommendations