A visualization approach for robustness analysis in multicriteria disaggregation–aggregation approaches

  • A. Spyridakos
  • N. Tsotsolas
  • Y. Siskos
  • D. Yannakopoulos
  • I. Vryzidis
Original Paper
  • 28 Downloads

Abstract

The assessment of criteria weights in multicriteria decision aid methods of value system approaches, often leads to the assessment of preference models with a low degree of robustness due to the assessment of several compatible value functions. This research work presents a methodological frame, which aims to three issues: (a) to explain the nature of low robustness of the estimated preference models, utilising tomographical techniques, visual tools, and specific indices for the robustness measurement, (b) to support the Decision Makers (DMs) towards a deeper understanding of his/her value system, and (c) to acquire additional preference information by the DM estimating a value functions of higher robustness through focused interactive feedbacks. The main scope of this research work is to exploit and enrich the interactive nature of the multicriteria disaggregation–aggregation approach. The proposed methodology is applied on a real world case study along with the utilisation of the RAVI (Robustness Analysis with Visual and Interactive approaches) software developed to support the above mentioned methodological approach.

Keywords

Multicriteria decision aid Robustness analysis Decision support systems Disaggregation Aggregation approach 

References

  1. Beuthe M, Scannella G (2001) Comparative analysis of UTA multicriteria methods. Eur J Oper Res 130(2):246–262CrossRefGoogle Scholar
  2. Bouyssou D (1990) Building criteria: a prerequisite for MCDA In: Bana e Costa CA (ed) Readings in multiple criteria decision-aid, Springer, Heidelberg, pp 58–80Google Scholar
  3. Doumpos M, Zopounidis C (2016) Data-driven robustness analysis for multicriteria classification problems using preference disaggregation approaches. In: Doumpos M, Zopounidis C, Grigoroudis E (eds) Robustness analysis in decision aiding, optimization, and analytics, vol 241. Springer, Cham, pp 21–37Google Scholar
  4. Doumpos M, Zopounidis C, Galariotis E (2014) Inferring robust decision models in multicriteria classification problems: an experimental analysis. Eur J Oper Res 236(2):601–611CrossRefGoogle Scholar
  5. Figueira J, Roy B (2002) Determining the weights of criteria in the ELECTRE type methods with a revised Simos’ procedure. Eur J Oper Res 139(2):317–326CrossRefGoogle Scholar
  6. Figueira JR, Greco S, Słowiński R (2009) Building a set of additive value functions representing a reference preorder and intensities of preference: GRIP method. Eur J Oper Res 195(2):460–486CrossRefGoogle Scholar
  7. Greco S, Mousseau V, Słowiński R (2008) Ordinal regression revisited: multiple criteria ranking using a set of additive value functions. Eur J Oper Res 191(2):416–436CrossRefGoogle Scholar
  8. Greco S, Kadziński M, Mousseau V, Słowiński R (2012) Robust ordinal regression for multiple criteria group decision: UTAGMS-GROUP and UTADISGMS-GROUP. Decis Support Syst 52(3):549–561CrossRefGoogle Scholar
  9. Grigoroudis E, Siskos Y (2010) Customer satisfaction evaluation: methods for measuring and implementing service quality. Springer, New YorkCrossRefGoogle Scholar
  10. Hurson C, Siskos Y (2014) A synergy of multicriteria techniques to assess additive value models. Eur J Oper Res 238(2):540–551CrossRefGoogle Scholar
  11. Jacquet-Lagreze E, Siskos J (1982) Assessing a set of additive utility functions for multicriteria decision-making, the UTA method. Eur J Oper Res 10(2):151–164CrossRefGoogle Scholar
  12. Kadziński M, Greco S, Slowiński R (2012a) Extreme ranking analysis in robust ordinal regression. Omega 40(4):488–501CrossRefGoogle Scholar
  13. Kadziński M, Greco S, Słowiński R (2012b) Selection of a representative value function in robust multiple criteria ranking and choice. Eur J Oper Res 217(3):541–553CrossRefGoogle Scholar
  14. Kadziński M, Ghaderi M, Wąsikowski J, Agell N (2017) Expressiveness and robustness measures for the evaluation of an additive value function in multiple criteria preference disaggregation methods: an experimental analysis. Comput Oper Res 87(Supplement C):146–164CrossRefGoogle Scholar
  15. Maňas M, Nedoma J (1968) Finding all vertices of a convex polyhedron. Numer Math 12(3):226–229CrossRefGoogle Scholar
  16. Roy B (2010) Robustness in operational research and decision aiding: a multi-faceted issue. Eur J Oper Res 200(3):629–638CrossRefGoogle Scholar
  17. Simos J (1990a) Evaluer l’impact Sur l’environnement: Une Approche Originale Par l’analyse Multicritère et La Négociation. Presses Polytechniques et Universitaires Romandes, LausanneGoogle Scholar
  18. Simos J (1990b) L’évaluation Environnementale: Un Processus Cognitif Négocié. Thèse de Doctorat, DGF EPFL, LausanneGoogle Scholar
  19. Siskos Y (1980) Comment modeliser les preferences au moyen de fonctions d’utilite additives. RAIRO Recherche Operationnelle 14:53–82CrossRefGoogle Scholar
  20. Siskos E, Tsotsolas N (2015) Elicitation of criteria importance weights through the Simos method: a robustness concern. Eur J Oper Res 246(2):543–553CrossRefGoogle Scholar
  21. Siskos Y, Yannacopoulos D (1985) UTASTAR, an ordinal regression method for building additive value functions. Investigacao Operacional 5(1):39–53Google Scholar
  22. Siskos Y, Spyridakos A, Yannacopoulos D (1993) MINORA: A multicriteria decision aiding system for discrete alternatives, J Inf Sci Technol. In: Siskos Y, Zopounidis C (eds) Special issue on multicriteria decision support systems, 2, pp 136–149Google Scholar
  23. Siskos Y, Spyridakos A, Yannacopoulos D (1999) Using artificial intelligence and visual techniques into preference disaggregation analysis: the MIIDAS system. Eur J Oper Res 113(2):281–299CrossRefGoogle Scholar
  24. Siskos Y, Grigoroudis E, Matsatsinis NF (2016) UTA Methods. In: Greco S, Ehrgott M, Figueira J (eds) Multiple criteria decision analysis, vol 233. Springer. New York, NY, pp 315–362CrossRefGoogle Scholar
  25. Spyridakos A, Psaromiligkos Y, Vryzidis L, Litsardaki M, Salmon I (2012) Survey forest fire detection systems via multicriteria disaggregation-aggregation approach: the case of Lycabettus Hill. Int J Multicriteria Decis Mak 2(1):29–46CrossRefGoogle Scholar
  26. Spyridakos A, Tsotsolas N, Yannacopoulos D, Siskos E (2015) Estimating criteria weights exploiting priorities of the criteria and techniques of robustness analysis In: 4th International Symposium and 26th National Conference on Operational Rearch, Chania, Crete, Greece on June 4–6Google Scholar
  27. Tsotsolas N, Spyridakos A, Siskos E, Salmon I (2016) Criteria weights assessment through prioritizations (WAP) using linear programming techniques and visualizations. Oper Res Int J.  https://doi.org/10.1007/s12351-016-0280-7
  28. Zopounidis C, Doumpos M (2000) PREFDIS: a multicriteria decision support system for sorting decision problems. Comput Oper Res 27(7):779–797CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Business AdministrationPiraeus University of Applied SciencesAigaleoGreece
  2. 2.Department of Information SciencesUniversity of PiraeusPiraeusGreece

Personalised recommendations