Diagnostic value of clinical risk scores for predicting normal stress myocardial perfusion imaging in subjects without coronary artery calcium

Abstract

Background

We evaluated if risk scores commonly used to predict the absence of significant stenosis at coronary computed tomography (CT) angiography are useful to predict a normal stress myocardial perfusion imaging (MPI) study.

Methods

Our cohort included a total of 1422 consecutive patients with zero coronary artery calcium score (ZCS) who underwent 82Rb PET/CT for evaluation of suspected coronary artery disease (CAD). Predictive models were constructed as reported by Genders et al. and Alshahrani et al., and the probability of abnormal summed stress score (SSS) and of reduced myocardial perfusion reserve (MPR) based on these risk scores was assessed.

Results

In the overall population, the prevalence of abnormal SSS was 0.10 and the prevalence of reduced MPR was 0.17 (both P < .001).The observed frequencies of abnormal SSS and reduced MPR vs the probabilities predicted by the Genders and Alshahrani models were above the diagonal identity line, highlighting an underestimation of the observed occurrence by these models. The areas under the receiver operating characteristic curve of the Genders and Alshahrani models indicated lack of discriminative ability for predicting abnormal SSS (0.547 and 0.527) and reduced MPR (0.509 and 0.538). The Hosmer–Lemeshow test revealed that both models underestimated the observed occurrence of abnormal SSS and reduced MPR.

Conclusions

Available models were unable to identify among patients with ZCS those with a low probability of a normal stress MPI study. Thus, an optimal approach to rule out from MPI patients without detectable coronary calcium still needs to be improved.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4

Abbreviations

MPI:

Myocardial perfusion imaging

CAD:

Coronary artery disease

CAC:

Coronary artery calcium

ZCS:

Zero-CAC score

CT:

Computed tomography

PET:

Positron emission tomography

ACC:

American College of Cardiology

AHA:

American Heart Association

SSS:

Summed stress score

SDS:

Summed difference score

MBF:

Myocardial blood flow

MPR:

Myocardial perfusion reserve

ROC:

Receiver operating characteristic

References

  1. 1.

    Megna R, Assante R, Zampella E, Gaudieri V, Nappi C, Cuocolo R, et al. Pretest models for predicting abnormal stress single-photon emission computed tomography myocardial perfusion imaging. J Nucl Cardiol 2019. https://doi.org/10.1007/s12350-019-01941-3.

    Article  PubMed  Google Scholar 

  2. 2.

    Megna R, Zampella E, Assante R, Nappi C, Gaudieri V, Mannarino T, et al. Temporal trends of abnormal myocardial perfusion imaging in a cohort of Italian subjects: Relation with cardiovascular risk factors. J Nucl Cardiol 2019. https://doi.org/10.1007/s12350-019-01630-1.

    Article  PubMed  Google Scholar 

  3. 3.

    LaMonte MJ, FitzGerald SJ, Church TS, Barlow CE, Radford NB, Levine BD, et al. Coronary artery calcium score and coronary heart disease events in a large cohort of asymptomatic men and women. Am J Epidemiol 2005;162:421-9.

    Article  Google Scholar 

  4. 4.

    Taylor AJ, Bindeman J, Feuerstein I, Cao F, Brazaitis M, O’Malley PG. Coronary calcium independently predicts incident premature coronary heart disease over measured cardiovascular risk factors: Mean three-year outcomes in the Prospective Army Coronary Calcium (PACC) project. J Am Coll Cardiol 2005;46:807-14.

    CAS  Article  Google Scholar 

  5. 5.

    Pletcher MJ, Tice JA, Pignone M, Browner WS. Using the coronary artery calcium score to predict coronary heart disease events: A systematic review and meta-analysis. Arch Intern Med 2004;164:1285-92.

    Article  Google Scholar 

  6. 6.

    Budoff MJ, Mayrhofer T, Ferencik M, Bittner D, Lee KL, Lu MT, et al. Prognostic value of coronary artery calcium in the PROMISE study (Prospective Multicenter Imaging Study for Evaluation of Chest Pain). Circulation 2017;136:1993-2005.

    CAS  Article  Google Scholar 

  7. 7.

    Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J 2020;41:407-77.

    Article  Google Scholar 

  8. 8.

    Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019;140:e596-646.

    PubMed  Google Scholar 

  9. 9.

    Blaha M, Budoff MJ, Shaw LJ, Khosa F, Rumberger JA, Berman D, et al. Absence of coronary artery calcification and all-cause mortality. JACC Cardiovasc Imaging 2009;2:692-700.

    Article  Google Scholar 

  10. 10.

    Sarwar A, Shaw LJ, Shapiro MD, Blankstein R, Hoffmann U, Cury RC, et al. Diagnostic and prognostic value of absence of coronary artery calcification. JACC Cardiovasc Imaging 2009;2:675-88.

    Article  Google Scholar 

  11. 11.

    Gibson AO, Blaha MJ, Arnan MK, Sacco RL, Szklo M, Herrington DM, et al. Coronary artery calcium and incident cerebrovascular events in an asymptomatic cohort. The MESA Study. JACC Cardiovasc Imaging 2014;7:1108-15.

    Article  Google Scholar 

  12. 12.

    Joshi PH, Blaha MJ, Budoff MJ, Miedema MD, McClelland RL, Lima JAC, et al. The 10-year prognostic value of zero and minimal CAC. JACC Cardiovasc Imaging 2017;10:957-8.

    Article  Google Scholar 

  13. 13.

    Petretta M, Daniele S, Acampa W, Imbriaco M, Pellegrino T, Messalli G, et al. Prognostic value of coronary artery calcium score and coronary CT angiography in patients with intermediate risk of coronary artery disease. Int J Cardiovasc Imaging 2012;28:1547-56.

    Article  Google Scholar 

  14. 14.

    Mittal TK, Pottle A, Nicol E, Barbir M, Ariff B, Mirsadraee S, et al. Prevalence of obstructive coronary artery disease and prognosis in patients with stable symptoms and a zero-coronary calcium score. Eur Heart J Cardiovasc Imaging 2017;18:922-9.

    Article  Google Scholar 

  15. 15.

    Villines TC, Hulten EA, Shaw LJ, Goyal M, Dunning A, Achenbach S, et al. Prevalence and severity of coronary artery disease and adverse events among symptomatic patients with coronary artery calcification scores of zero undergoing coronary computed tomography angiography: Results from the CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter) registry. J Am Coll Cardiol 2011;58:2533-40.

    Article  Google Scholar 

  16. 16.

    Genders TS, Steyerberg EW, Hunink MG, Nieman K, Galema TW, Mollet NR, et al. Prediction model to estimate presence of coronary artery disease: RETROSPECTIVE pooled analysis of existing cohorts. BMJ 2012;344:e3485.

    Article  Google Scholar 

  17. 17.

    Alshahrani AM, Mahmood H, Wells GA, Hossain A, Rybicki FJ, Achenbach S, et al. Point of care clinical risk score to improve the negative diagnostic utility of an Agatston score of zero: Averting the need for coronary computed tomography angiography. Circ Cardiovasc Imaging 2019;12:e008737.

    Article  Google Scholar 

  18. 18.

    Megna R, Petretta M, Alfano B, Cantoni V, Green R, Daniele S, et al. A new relational database including clinical data and myocardial perfusion imaging findings in coronary artery disease. Curr Med Imaging Rev 2019;15:661-71.

    Article  Google Scholar 

  19. 19.

    Gibbons RJ, Balady GJ, Bricker JT, Chaitman BR, Fletcher GF, Froelicher VF, et al. guideline update for exercise testing: Summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). Circulation 2002;2002:1883-92.

    Google Scholar 

  20. 20.

    Einstein AJ, Johnson LL, Bokhari S, Son J, Thompson RC, Bateman TM, et al. Agreement of visual estimation of coronary artery calcium from low-dose CT attenuation correction scans in hybrid PET/CT and SPECT/CT with standard Agatston score. J Am Coll Cardiol 2010;56:1914-21. https://doi.org/10.1016/j.jacc.2010.05.057.

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Berman DS, Abidov A, Kang X, Hayes SW, Friedman JD, Sciammarella MG, et al. Prognostic validation of a 17-segment score derived from a 20-segment score for myocardial perfusion SPECT interpretation. J Nucl Cardiol 2004;11:414-23.

    Article  Google Scholar 

  22. 22.

    Verberne HJ, Acampa W, Anagnostopoulos C, Ballinger J, Bengel F, De Bondt P, et al. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision. Eur J Nucl Med Mol Imaging 2015;2015:1929-40.

    Article  Google Scholar 

  23. 23.

    Renaud JM, Mylonas I, McArdle B, Dowsley T, Yip K, Turcotte E, et al. Clinical interpretation standards and quality assurance for the multicenter PET/CT trial rubidium-ARMI. J Nucl Med 2014;55:58-64.

    Article  Google Scholar 

  24. 24.

    Klein R, Renaud JM, Ziadi MC, Thorn SL, Adler A, Beanlands RS, et al. Intra- and inter-operator repeatability of myocardial blood flow and myocardial flow reserve measurements using rubidium- 82 PET and a highly automated analysis program. J Nucl Cardiol 2010;17:600-16.

    Article  Google Scholar 

  25. 25.

    Zampella E, Acampa W, Assante R, Gaudieri V, Nappi C, Mannarino T, et al. Combined evaluation of regional coronary artery calcium and myocardial perfusion by 82Rb PET/CT in predicting lesion-related outcome. Eur J Nucl Med Mol Imaging 2019. https://doi.org/10.1007/s00259-019-04534-x.

    Article  PubMed  Google Scholar 

  26. 26.

    Johnson NP, Kirkeeide RL, Gould KL. Coronary anatomy to predict physiology: Fundamental limits. Circ Cardiovasc Imaging 2013;6:817-32.

    Article  Google Scholar 

  27. 27.

    Diamond GA. A clinically relevant classification of chest discomfort. J Am Coll Cardiol 1983;1:574-5.

    CAS  Article  Google Scholar 

  28. 28.

    Murthy VL, Naya M, Taqueti VR, Foster CR, Gaber M, Hainer J, et al. Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation 2014;129:2518-27.

    Article  Google Scholar 

  29. 29.

    Assante R, Acampa W, Zampella E, Arumugam P, Nappi C, Gaudieri V, et al. Prognostic value of atherosclerotic burden and coronary vascular function in patients with suspected coronary artery disease. Eur J Nucl Med Mol Imaging 2017;44:2290-8.

    Article  Google Scholar 

  30. 30.

    Gaudieri V, Acampa W, Rozza F, Nappi C, Zampella E, Assante R, et al. Coronary vascularfunction in patients with resistant hypertension and normal myocardial perfusion: A propensity score analysis. Eur Heart J Cardiovasc Imaging 2019;20:949-58.

    Article  Google Scholar 

  31. 31.

    Zhou W, Brown JM, Bajaj NS, Chandra A, Divakaran S, Weber B, et al. Hypertensive coronary microvascular dysfunction: A subclinical marker of end organ damage and heart failure. Eur Heart J 2020. https://doi.org/10.1093/eurheartj/ehaa191.

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Nappi C, Gaudieri V, Acampa W, Arumugam P, Assante R, Zampella E, et al. Coronary vascular age: An alternate means for predicting stress-induced myocardial ischemia in patients with suspected coronary artery disease. J Nucl Cardiol 2019;26:1348-55.

    Article  Google Scholar 

  33. 33.

    Schindler TH, Dilsizian V. Coronary microvascular dysfunction: Clinical considerations and noninvasive diagnosis. JACC Cardiovasc Imaging 2020;13:140-55.

    Article  Google Scholar 

  34. 34.

    Mathew RC, Bourque JM, Salerno M, Kramer CM. Cardiovascular imaging techniques to assess microvascular dysfunction. JACC Cardiovasc Imaging 2019. https://doi.org/10.1016/j.jcmg.2019.09.006.

    Article  PubMed  Google Scholar 

  35. 35.

    Maron DJ, Hochman JS, Reynolds HR, Bangalore S, O’Brien SM, Boden WE, et al. Initial invasive or conservative strategy for stable coronary disease. N Engl J Med 2020;382:1395-407.

    Article  Google Scholar 

  36. 36.

    Lloyd-Jones DM, Braun LT, Ndumele CE, Smith SC Jr, Sperling LS, Virani SS, et al. Use of risk assessment tools to guide decision-making in the primary prevention of atherosclerotic cardiovascular disease: A special report from the American Heart Association and American College of Cardiology. J Am Coll Cardiol 2019;73:3153-316.

    Article  Google Scholar 

  37. 37.

    Cuocolo R, Perillo T, De Rosa E, Ugga L, Petretta M. Current applications of big data and machine learning in cardiology. J Geriatr Cardiol 2019;16:601-7.

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Megna R, Cuocolo A, Petretta M. Applications of machine learning in medicine. Biomed J Sci Tech Res 2019;20:15350-2.

    Google Scholar 

Download references

Disclosure

R Megna, C. Nappi, R. Assante, E. Zampella, V. Gaudieri, T. Mannarino, R. Green, V. Cantoni, A. D’Antonio, P. Arumugam, W. Acampa, M. Petretta, and A. Cuocolo declare that they have no conflicts of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alberto Cuocolo MD.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarizes the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 31 kb)

Supplementary material 2 (PPT 342 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Megna, R., Nappi, C., Gaudieri, V. et al. Diagnostic value of clinical risk scores for predicting normal stress myocardial perfusion imaging in subjects without coronary artery calcium. J. Nucl. Cardiol. (2020). https://doi.org/10.1007/s12350-020-02247-5

Download citation

Keywords

  • CAD
  • PET
  • MPI
  • diagnostic and prognostic application