Skip to main content
Log in

Characterization of a highly effective preparation for suppression of myocardial glucose utilization

  • ORIGINAL ARTICLE
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

With appropriate protocols, F-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) can visualize myocardial inflammation. Optimal protocols and normative myocardial FDG uptake values are not well-established.

Methods

We evaluated 111 patients referred for inflammation cardiac FDG PET/CT. Patients followed a low-carbohydrate, high-fat diet for 36 hours before imaging and received unfractionated heparin. Glucose and fatty acid metabolism biomarkers were obtained. Mean blood pool and maximum myocardial uptake (SUVmean, SUVmax) were measured, avoiding areas of abnormal FDG uptake or spillover.

Results

Adequate suppression of myocardial FDG uptake occurred in 95% of patients (n = 106). Myocardial SUVmax was significantly below background blood pool SUVmean: septal myocardial to blood pool ratio 0.75 (95% CI 0.73-0.77; P < 0.001); lateral myocardial to blood pool ratio 0.70 (95% CI 0.68-0.72; P < 0.001). Glucose, insulin, and C-peptide correlated to blood pool SUVmean (Spearman rs = 0.39, P < 0.01; rs = 0.40, P < 0.01; rs = 0.35, P < 0.01) and myocardial SUVmax (Spearman rs = 0.31, P < 0.01; rs = 0.31, P < 0.01; rs = 0.26, P < 0.01). Fatty acid metabolism biomarkers did not correlate to myocardial SUVmax.

Conclusions

Patients following intensive metabolic preparation have myocardial FDG SUVmax below background SUVmean. Biomarkers of glucose metabolism modestly correlate to FDG uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

FDG:

F-18 fluorodeoxyglucose

PET/CT:

Positron emission tomography/computed tomography

SUVmax :

Maximal standard uptake value

SUVmean :

Mean standardized uptake value

ROI:

Region of interest

References

  1. Chareonthaitawee P, Beanlands RS, Chen W, et al. Joint SNMMI–ASNC expert consensus document on the role of 18F-FDG PET/CT in cardiac sarcoid detection and therapy monitoring. J Nucl Med 2017;58:1341-53. https://doi.org/10.2967/jnumed.117.196287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lawal I, Sathekge M. F-18 FDG PET/CT imaging of cardiac and vascular inflammation and infection. Br Med Bull 2016;120:55-74. https://doi.org/10.1093/bmb/ldw035.

    Article  CAS  PubMed  Google Scholar 

  3. Osborne MT, Hulten EA, Murthy VL, et al. Patient preparation for cardiac fluorine-18 fluorodeoxyglucose positron emission tomography imaging of inflammation. J Nucl Cardiol 2016. https://doi.org/10.1007/s12350-016-0502-7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dilsizian V, Bacharach SL, Beanlands RS, et al. ASNC imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology procedures. J Nucl Cardiol 2016. https://doi.org/10.1007/s12350-016-0522-3.

    Article  PubMed  Google Scholar 

  5. Ohira H, Tsujino I, Yoshinaga K. 18F-Fluoro-2-deoxyglucose positron emission tomography in cardiac sarcoidosis. Eur J Nucl Med Mol Imaging 2011;38:1773-83. https://doi.org/10.1007/s00259-011-1832-y.

    Article  CAS  PubMed  Google Scholar 

  6. Masuda A, Naya M, Manabe O, et al. Administration of unfractionated heparin with prolonged fasting could reduce physiological 18F-fluorodeoxyglucose uptake in the heart. Acta Radiol 2016;57:661-8. https://doi.org/10.1177/0284185115600916.

    Article  PubMed  Google Scholar 

  7. Scholtens AM, Verberne HJ, Budde RPJ, Lam MGEH. Additional heparin preadministration improves cardiac glucose metabolism suppression over low-carbohydrate diet alone in 18F-FDG PET imaging. J Nucl Med 2016;57:568-73. https://doi.org/10.2967/jnumed.115.166884.

    Article  CAS  PubMed  Google Scholar 

  8. Boden G, Chen X, Ruiz J, et al. Mechanisms of fatty acid-induced inhibition of glucose uptake. J Clin Invest 1994;93:2438-46. https://doi.org/10.1172/JCI117252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Memmott MJ, James J, Armstrong IS, et al. The performance of quantitation methods in the evaluation of cardiac implantable electronic device (CIED) infection: A technical review. J Nucl Cardiol 2015. https://doi.org/10.1007/s12350-015-0106-7.

    Article  PubMed  Google Scholar 

  10. Scholtens AM, Swart LE, te Kolste HJ, et al. Standardized uptake values in FDG PET/CT for prosthetic heart valve endocarditis: a call for standardization. J Nucl Cardiol 2017. https://doi.org/10.1007/s12350-017-0932-x.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Asmal AC, Leary WP, Thandroyen F, et al. A dose–response study of the anticoagulant and lipolytic activities of heparin in normal subjects. Br J Clin Pharmacol 1979;7:531-3.

    Article  CAS  Google Scholar 

  12. Geday E. Lipolysis in plasma after subcutaneous, intramuscular and intravenous heparin in small doses. Acta Med Scand 1966;179:5-12.

    Article  Google Scholar 

  13. Rogers WJ, McDaniel HG, Moraski RE, et al. Effect of heparin-induced free fatty acid elevation on myocardial oxygen consumption in man. Am J Cardiol 1977;40:365-72.

    Article  CAS  Google Scholar 

  14. Williams G, Kolodny GM. Suppression of myocardial 18F-FDG uptake by preparing patients with a high-fat, low-carbohydrate diet. Am J Roentgenol 2008;190:W151-6. https://doi.org/10.2214/AJR.07.2409.

    Article  Google Scholar 

  15. Kobayashi Y, Kumita S, Fukushima Y, et al. Significant suppression of myocardial 18F-fluorodeoxyglucose uptake using 24-h carbohydrate restriction and a low-carbohydrate, high-fat diet. J Cardiol 2013;62:314-9. https://doi.org/10.1016/j.jjcc.2013.05.004.

    Article  PubMed  Google Scholar 

  16. Morooka M, Moroi M, Uno K, et al. Long fasting is effective in inhibiting physiological myocardial 18F-FDG uptake and for evaluating active lesions of cardiac sarcoidosis. EJNMMI Res 2014;4:1. https://doi.org/10.1186/2191-219X-4-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Manabe O, Yoshinaga K, Ohira H, et al. The effects of 18-h fasting with low-carbohydrate diet preparation on suppressed physiological myocardial 18F-fluorodeoxyglucose (FDG) uptake and possible minimal effects of unfractionated heparin use in patients with suspected cardiac involvement sarcoidosis. J Nucl Cardiol 2016;23:244-52. https://doi.org/10.1007/s12350-015-0226-0.

    Article  PubMed  Google Scholar 

  18. Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:412-9. https://doi.org/10.1007/BF00280883.

    Article  CAS  PubMed  Google Scholar 

  19. Lee BC, Moody JB, Weinberg RL, et al. Optimization of temporal sampling for 82rubidium PET myocardial blood flow quantification. J Nucl Cardiol 2017;24:1517-29. https://doi.org/10.1007/s12350-017-0899-7.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gormsen LC, Christensen NL, Bendstrup E, et al. Complete somatostatin-induced insulin suppression combined with heparin loading does not significantly suppress myocardial 18F-FDG uptake in patients with suspected cardiac sarcoidosis. J Nucl Cardiol 2013;20:1108-15. https://doi.org/10.1007/s12350-013-9798-8.

    Article  PubMed  Google Scholar 

  21. Bois JP, Chareonthaitawee P. Continuing evolution in preparation protocols for 18FDG PET assessment of inflammatory or malignant myocardial disease. J Nucl Cardiol 2017;24:989-92. https://doi.org/10.1007/s12350-016-0477-4.

    Article  PubMed  Google Scholar 

  22. Frayn KN. The glucose–fatty acid cycle: a physiological perspective. Biochem Soc Trans 2003;31:1115-9. https://doi.org/10.1042/bst0311115.

    Article  CAS  PubMed  Google Scholar 

  23. Vik-Mo H, Mjøs OD. Influence of free fatty acids on myocardial oxygen consumption and ischemic injury. Am J Cardiol 1981;48:361-5. https://doi.org/10.1016/0002-9149(81)90621-4.

    Article  CAS  PubMed  Google Scholar 

  24. Soussan M, Brillet P-Y, Nunes H, et al. Clinical value of a high-fat and low-carbohydrate diet before FDG-PET/CT for evaluation of patients with suspected cardiac sarcoidosis. J Nucl Cardiol 2013;20:120-7. https://doi.org/10.1007/s12350-012-9653-3.

    Article  PubMed  Google Scholar 

  25. Wykrzykowska J, Lehman S, Williams G, et al. Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J Nucl Med 2009;50:563-8. https://doi.org/10.2967/jnumed.108.055616.

    Article  PubMed  Google Scholar 

  26. Harisankar CNB, Mittal BR, Agrawal KL, et al. Utility of high fat and low carbohydrate diet in suppressing myocardial FDG uptake. J Nucl Cardiol 2011;18:926-36. https://doi.org/10.1007/s12350-011-9422-8.

    Article  PubMed  Google Scholar 

  27. Lu Y, Grant C, Xie K, Sweiss NJ. Suppression of myocardial 18F-FDG uptake through prolonged high-fat, high-protein, and very-low-carbohydrate diet before FDG-PET/CT for evaluation of patients with suspected cardiac sarcoidosis. Clin Nucl Med 2016;42:88-94. https://doi.org/10.1097/RLU.0000000000001465.

    Article  Google Scholar 

  28. Demeure F, Hanin F-X, Bol A, et al. A randomized trial on the optimization of 18F-FDG myocardial uptake suppression: Implications for vulnerable coronary plaque imaging. J Nucl Med 2014;55:1629-35. https://doi.org/10.2967/jnumed.114.138594.

    Article  CAS  PubMed  Google Scholar 

  29. Cheng VY, Slomka PJ, Ahlen M, et al. Impact of carbohydrate restriction with and without fatty acid loading on myocardial 18F-FDG uptake during PET: A randomized controlled trial. J Nucl Cardiol 2010;17:286-91. https://doi.org/10.1007/s12350-009-9179-5.

    Article  PubMed  Google Scholar 

  30. Nensa F, Tezgah E, Schweins K, et al. Evaluation of a low-carbohydrate diet-based preparation protocol without fasting for cardiac PET/MR imaging. J Nucl Cardiol 2017;24:980-8. https://doi.org/10.1007/s12350-016-0443-1.

    Article  PubMed  Google Scholar 

  31. Alvi RM, Young BD, Shahab Z, et al. Repeatability and optimization of FDG positron emission tomography for evaluation of cardiac sarcoidosis. JACC Cardiovasc Imaging 2019. https://doi.org/10.1016/j.jcmg.2019.01.011.

    Article  PubMed  Google Scholar 

Download references

Disclosure

S. R. Larson, J.A. Pieper, E. A. Hulten, and R. L. Weinberg have no disclosures or conflicts of interest related to this publication. E. P. Ficaro and J. R. Corbett have financial interest in INVIA Medical Imaging Solutions, which licenses the commercial software used for imaging processing. INVIA Medical Imaging Solutions did not provide direct support to this study. V. L. Murthy has received consulting fees and stock options from Ionetix, Inc., owns stock in General Electric and Cardinal Health, has a research grant from Siemens Medical Imaging, and has provided expert witness testimony on behalf of Jubilant Draximage. V. L. Murthy is supported by 1R01HL136685 from the National, Heart, Lung, Blood Institute and 1R01AG059729 from the National Institute on Aging. The views expressed are those of the author and do not reflect official policy of Fort Belvoir Community Hospital, the Defense Health Agency, the Department of Defense, or the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Weinberg MD, PhD.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarises the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larson, S.R., Pieper, J.A., Hulten, E.A. et al. Characterization of a highly effective preparation for suppression of myocardial glucose utilization. J. Nucl. Cardiol. 27, 849–861 (2020). https://doi.org/10.1007/s12350-019-01786-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-019-01786-w

Keywords

Navigation