Skip to main content
Log in

State-of-the-art radionuclide imaging in cardiac transthyretin amyloidosis

  • Theme Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Cardiac amyloidosis, once considered untreatable, is now gaining well-deserved attention due to advances in imaging and the recent approval of targeted breakthrough therapies. In this paper, we discuss the role of radionuclide imaging in the evaluation and management of patients with the most common form of amyloidosis—cardiac transthyretin amyloidosis (ATTR). We provide a comprehensive summary of the literature interspersed with our institutional experience as appropriate, to deliver our perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Adams D, Gonzalez-Duarte A, O’Riordan WD, Yang CC, Ueda M, Adams AV, et al. Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis. N Engl J Med 2018;379:11-21.

  2. Benson MD, Waddington-Cruz M, Berk JL, Polydefkis M, Dyck PJ, Wang AK, et al. Inotersen Treatment for Patients with Hereditary Transthyretin Amyloidosis. N Engl J Med 2018;379:22-31.

    Article  PubMed  CAS  Google Scholar 

  3. Falk RH. Diagnosis and management of the cardiac amyloidoses. Circulation 2005;112:2047-60.

    Article  PubMed  Google Scholar 

  4. Quarta CC, Buxbaum JN, Shah AM, Falk RH, Claggett B, Kitzman DW, et al. The amyloidogenic V122I transthyretin variant in elderly black Americans. N Engl J Med 2015;372:21-9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Kyle RA, Gertz MA. Primary systemic amyloidosis: clinical and laboratory features in 474 cases. Semin Hematol 1995;32:45-59.

    PubMed  CAS  Google Scholar 

  6. Ruberg FL, Berk JL. Transthyretin (TTR) cardiac amyloidosis. Circulation 2012;126:1286-300.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lousada I, Comenzo RL, Landau H, Guthrie S, Merlini G. Light Chain Amyloidosis: Patient Experience Survey from the Amyloidosis Research Consortium. Adv Ther 2015;32:920-8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Quarta CC, Solomon SD, Uraizee I, Kruger J, Longhi S, Ferlito M, et al. Left ventricular structure and function in transthyretin-related versus light-chain cardiac amyloidosis. Circulation 2014;129:1840-9.

    Article  PubMed  Google Scholar 

  9. Martinez-Naharro A, Treibel TA, Abdel-Gadir A, Bulluck H, Zumbo G, Knight DS, et al. Magnetic Resonance in Transthyretin Cardiac Amyloidosis. J Am Coll Cardiol 2017;70:466-77.

    Article  PubMed  CAS  Google Scholar 

  10. Quarta CC, Gonzalez-Lopez E, Gilbertson JA, Botcher N, Rowczenio D, Petrie A, et al. Diagnostic sensitivity of abdominal fat aspiration in cardiac amyloidosis. Eur Heart J 2017;38:1905-8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Gillmore JD, Maurer MS, Falk RH, Merlini G, Damy T, Dispenzieri A, et al. Nonbiopsy Diagnosis of Cardiac Transthyretin Amyloidosis. Circulation 2016;133:2404-12.

    Article  PubMed  CAS  Google Scholar 

  12. Falk RH, Alexander KM, Liao R, Dorbala S. AL (Light-Chain) Cardiac Amyloidosis: A Review of Diagnosis and Therapy. J Am Coll Cardiol 2016;68:1323-41.

    Article  PubMed  Google Scholar 

  13. Maurer MS, Schwartz JH, Gundapaneni B, Elliott PM, Merlini G, Waddington-Cruz M, et al. Tafamidis Treatment for Patients with Transthyretin Amyloid Cardiomyopathy. N Engl J Med 2018;379:1007-16.

    Article  PubMed  CAS  Google Scholar 

  14. Gertz MA, Brown ML, Hauser MF, Kyle RA. Utility of technetium Tc 99 m pyrophosphate bone scanning in cardiac amyloidosis. Arch Intern Med 1987;147:1039-44.

    Article  PubMed  CAS  Google Scholar 

  15. Buja LM, Parkey RW, Stokely EM, Bonte FJ, Willerson JT. Pathophysiology of technetium-99 m stannous pyrophosphate and thallium-201 scintigraphy of acute anterior myocardial infarcts in dogs. J Clin Invest 1976;57:1508-22.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Buja LM, Tofe AJ, Kulkarni PV, Mukherjee A, Parkey RW, Francis MD, et al. Sites and mechanisms of localization of technetium-99 m phosphorus radiopharmaceuticals in acute myocardial infarcts and other tissues. J Clin Invest 1977;60:724-40.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Dewanjee MK, Kahn PC. Mechanism of localization of 99 mTc-labeled pyrophosphate and tetracycline in infarcted myocardium. J Nucl Med 1976;17:639-46.

    PubMed  CAS  Google Scholar 

  18. Pepys MB, Dyck RF, de Beer FC, Skinner M, Cohen AS. Binding of serum amyloid P-component (SAP) by amyloid fibrils. Clin Exp Immunol 1979;38:284-93.

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Stats MA, Stone JR. Varying levels of small microcalcifications and macrophages in ATTR and AL cardiac amyloidosis: implications for utilizing nuclear medicine studies to subtype amyloidosis. Cardiovasc Pathol 2016;25:413-7.

    Article  PubMed  CAS  Google Scholar 

  20. Bokhari S, Castano A, Pozniakoff T, Deslisle S, Latif F, Maurer MS. (99 m)Tc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. Circ Cardiovasc Imaging 2013;6:195-201.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rapezzi C, Quarta CC, Guidalotti PL, Pettinato C, Fanti S, Leone O, et al. Role of (99 m)Tc-DPD scintigraphy in diagnosis and prognosis of hereditary transthyretin-related cardiac amyloidosis. JACC Cardiovasc imaging 2011;4:659-70.

    Article  PubMed  Google Scholar 

  22. Perugini E, Guidalotti PL, Salvi F, Cooke RM, Pettinato C, Riva L, et al. Noninvasive etiologic diagnosis of cardiac amyloidosis using 99 mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. J Am Coll Cardiol 2005;46:1076-84.

    Article  PubMed  Google Scholar 

  23. Abulizi M, Cottereau AS, Guellich A, Vandeventer S, Galat A, Van Der Gucht A et al. Early-phase myocardial uptake intensity of 99 mTc-HMDP vs 99 mTc-DPD in patients with hereditary transthyretin-related cardiac amyloidosis. J Nucl Cardiol 2016.

  24. Hutt DF, Quigley AM, Page J, Hall ML, Burniston M, Gopaul D, et al. Utility and limitations of 3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy in systemic amyloidosis. Eur Heart J Cardiovasc Imaging 2014;15:1289-98.

    Article  PubMed  Google Scholar 

  25. Castano A, Haq M, Narotsky DL, Goldsmith J, Weinberg RL, Morgenstern R et al. Multicenter Study of Planar Technetium 99 m Pyrophosphate Cardiac Imaging: Predicting Survival for Patients With ATTR Cardiac Amyloidosis. JAMA Cardiol 2016.

  26. Castano A, DeLuca A, Weinberg R, Pozniakoff T, Blaner WS, Pirmohamed A, et al. Serial scanning with technetium pyrophosphate ((99m)Tc-PYP) in advanced ATTR cardiac amyloidosis. J Nucl Cardiol 2016;23:1355-63.

    Article  PubMed  Google Scholar 

  27. Rapezzi C, Quarta CC, Guidalotti PL, Longhi S, Pettinato C, Leone O, et al. Usefulness and limitations of 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy in the aetiological diagnosis of amyloidotic cardiomyopathy. Eur J Nucl Med Mol Imaging 2011;38:470-8.

    Article  PubMed  Google Scholar 

  28. Galat A, Rosso J, Guellich A, Van Der Gucht A, Rappeneau S, Bodez D, et al. Usefulness of (99m)Tc-HMDP scintigraphy for the etiologic diagnosis and prognosis of cardiac amyloidosis. Amyloid 2015;22:210-20.

    Article  PubMed  CAS  Google Scholar 

  29. Maurer MS. Noninvasive Identification of ATTRwt Cardiac Amyloid: The Re-emergence of Nuclear Cardiology. Am J Med 2015;128:1275-80.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kula RW, Engel WK, Line BR. Scanning for soft-tissue amyloid. Lancet 1977;1:92-3.

    Article  PubMed  CAS  Google Scholar 

  31. Sperry BW, Gonzalez MH, Brunken R, Cerqueira MD, Hanna M, Jaber WA. Non-cardiac uptake of technetium-99m pyrophosphate in transthyretin cardiac amyloidosis. J Nucl Cardiol 2018.

  32. Pilebro B, Suhr OB, Naslund U, Westermark P, Lindqvist P, Sundstrom T. (99m)Tc-DPD uptake reflects amyloid fibril composition in hereditary transthyretin amyloidosis. Ups J Med Sci 2016;121:17-24.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pilebro B, Arvidsson S, Lindqvist P, Sundstrom T, Westermark P, Antoni G, et al. Positron emission tomography (PET) utilizing Pittsburgh compound B (PIB) for detection of amyloid heart deposits in hereditary transthyretin amyloidosis (ATTR). J Nucl Cardiol 2018;25:240-8.

    Article  PubMed  Google Scholar 

  34. Cornwell GG 3rd, Murdoch WL, Kyle RA, Westermark P, Pitkanen P. Frequency and distribution of senile cardiovascular amyloid. A clinicopathologic correlation. Am J Med 1983;75:618-23.

    PubMed  Google Scholar 

  35. Pomerance A. Senile cardiac amyloidosis. Br Heart J 1965;27:711-8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Haq M, Pawar S, Berk JL, Miller EJ, Ruberg FL. Can 99m-Tc-Pyrophosphate Aid in Early Detection of Cardiac Involvement in Asymptomatic Variant TTR Amyloidosis? JACC Cardiovasc imaging 2016.

  37. Bennani Smires Y, Victor G, Ribes D, Berry M, Cognet T, Mejean S, et al. Pilot study for left ventricular imaging phenotype of patients over 65 years old with heart failure and preserved ejection fraction: the high prevalence of amyloid cardiomyopathy. Int J Cardiovasc Imaging 2016;32:1403-13.

    Article  PubMed  Google Scholar 

  38. Gonzalez-Lopez E, Gallego-Delgado M, Guzzo-Merello G, de Haro-Del Moral FJ, Cobo-Marcos M, Robles C, et al. Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction. Eur Heart J 2015;36:2585-94.

    Article  PubMed  CAS  Google Scholar 

  39. Castano A, Narotsky DL, Hamid N, Khalique OK, Morgenstern R, DeLuca A, et al. Unveiling transthyretin cardiac amyloidosis and its predictors among elderly patients with severe aortic stenosis undergoing transcatheter aortic valve replacement. Eur Heart J 2017;38:2879-87.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sperry BW, Reyes BA, Ikram A, Donnelly JP, Phelan D, Jaber WA, et al. Tenosynovial and Cardiac Amyloidosis in Patients Undergoing Carpal Tunnel Release. J Am Coll Cardiol 2018;72:2040-50.

    Article  PubMed  Google Scholar 

  41. Longhi S, Guidalotti PL, Quarta CC, Gagliardi C, Milandri A, Lorenzini M, et al. Identification of TTR-related subclinical amyloidosis with 99mTc-DPD scintigraphy. JACC Cardiovasc imaging 2014;7:531-2.

    Article  PubMed  Google Scholar 

  42. Mohamed-Salem L, Santos-Mateo JJ, Sanchez-Serna J, Hernandez-Vicente A, Reyes-Marle R, Castellon Sanchez MI, et al. Prevalence of wild type ATTR assessed as myocardial uptake in bone scan in the elderly population. Int J Cardiol 2018;270:192-6.

    Article  PubMed  Google Scholar 

  43. Falk RH, Quarta CC, Dorbala S. How to image cardiac amyloidosis. Circ Cardiovasc Imaging 2014;7:552-62.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hutt DF, Fontana M, Burniston M, Quigley AM, Petrie A, Ross JC, et al. Prognostic utility of the Perugini grading of 99mTc-DPD scintigraphy in transthyretin (ATTR) amyloidosis and its relationship with skeletal muscle and soft tissue amyloid. Eur Heart J Cardiovasc Imaging 2017;18:1344-50.

    Article  PubMed  Google Scholar 

  45. Safety and Efficacy of Tafamidis in Patients With Transthyretin Cardiomyopathy; 2014.

  46. Phase 2 Study to Evaluate ALN-TTRSC (Revusiran) in Patients With Transthyretin (TTR) Cardiac Amyloidosis; 2014.

  47. Tolerability and Efficacy of a Combination of Doxycycline and TUDCA in Patients With Transthyretin Amyloid Cardiomyopathy; 2013.

  48. Vandenberghe R, Van Laere K, Ivanoiu A, Salmon E, Bastin C, Triau E, et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol 2010;68:319-29.

    Article  PubMed  Google Scholar 

  49. Dorbala S, Vangala D, Semer J, Strader C, Bruyere JR Jr, Di Carli MF, et al. Imaging cardiac amyloidosis: a pilot study using (18)F-florbetapir positron emission tomography. Eur J Nucl Med Mol Imaging 2014;41:1652-62.

    Article  PubMed  CAS  Google Scholar 

  50. Law WP, Wang WY, Moore PT, Mollee PN, Ng AC. Cardiac amyloid imaging with 18F-florbetaben positron emission tomography: a pilot study. J Nucl Med 2016.

  51. Osborne DR, Acuff SN, Stuckey A, Wall J. A routine PET/CT protocol with simple calculations for assessing cardiac amyloid using 18F-Florbetapir. Front Cardiovasc Med 2015;2:23.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Antoni G, Lubberink M, Estrada S, Axelsson J, Carlson K, Lindsjo L, et al. In vivo visualization of amyloid deposits in the heart with 11C-PIB and PET. J Nucl Med 2013;54:213-20.

    Article  PubMed  CAS  Google Scholar 

  53. Park MA, Padera RF, Belanger A, Dubey S, Hwang DH, Veeranna V et al. 18F-Florbetapir binds specifically to myocardial light chain and transthyretin amyloid deposits: Autoradiography Study. Circ Cardiovasc imaging 2015;8:e002954.

    Article  PubMed  Google Scholar 

  54. Law WP, Wang W, Moore P, Mollee P, Ng A. Cardiac amyloid imaging with (18)F-florbetaben positron emission tomography: a pilot study. Amyloid 2017;24:162.

    Article  PubMed  Google Scholar 

  55. Dorbala S, Bokhari S, Miller E, Bullock-Palmer R, Soman P, Thompson R. ASNC Practice Points: 99mTechnetium-Pyrophosphate Imaging for Transthyretin Cardiac Amyloidosis 2016.

  56. Longhi S, Lorenzini M, Gagliardi C, Milandri A, Marzocchi A, Marrozzini C, et al. Coexistence of degenerative aortic stenosis and wild-type transthyretin-related cardiac amyloidosis. JACC Cardiovasc imaging 2016;9:325-7.

    Article  PubMed  Google Scholar 

  57. Hayne DJ, Lim S, Donnelly PS. Metal complexes designed to bind to amyloid-beta for the diagnosis and treatment of Alzheimer’s disease. Chem Soc Rev 2014;43:6701-15.

    Article  PubMed  CAS  Google Scholar 

  58. Harada R, Okamura N, Furumoto S, Yanai K. Imaging protein misfolding in the brain using beta-sheet ligands. Front Neurosci 2018;12:585.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Disclosures

Dr. Singh has no disclosures. Dr. Falk has research grants from Ionnis, Alnylam, Glaxo Smith Kline and Pfizer. He serves as a consultant for Proclara. Dr. Di Carli has research grant from Spectrum Dynamics and Gilead, and consulting fees from Sanofi and GE. Dr. Dorbala served as a consultant with Advanced Accelerator Applications, General Electric and Proclara. Dr. Rapezzi has research grants from Pfizer and consulting fees from Pfizer and Alnylam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharmila Dorbala MD.

Additional information

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarises the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

Funding

Dr. Dorbala is supported by NIH RO1 Grant (RO1 HL 130563) and the American Heart Association Grant (AHA 16 CSA 2888 0004). Dr. Falk is supported by NIH RO1 Grant (RO1 HL 130563).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 1211 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Falk, R., Di Carli, M.F. et al. State-of-the-art radionuclide imaging in cardiac transthyretin amyloidosis. J. Nucl. Cardiol. 26, 158–173 (2019). https://doi.org/10.1007/s12350-018-01552-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-018-01552-4

Keywords

Navigation