Compared vulnerabilities to small cardiac motions between different cameras used for myocardial perfusion imaging

  • Julien Salvadori
  • Yolande Petegnief
  • Remi Sabbah
  • Olivier Morel
  • Hatem Boulahdour
  • Gilles Karcher
  • Pierre-Yves Marie
  • Laetitia Imbert
Original Article


This phantom-based study was aimed to determine whether cardiac CZT-cameras, which provide an enhanced spatial resolution and image contrast compared to Anger cameras, are similarly affected by small cardiac motions. Translations of a left ventricular (LV) insert at half-SPECT acquisitions through six possible orthogonal directions and with 5- or 10-mm amplitude were simulated on the Discovery NM-530c and DSPECT CZT-cameras and on an Anger Symbia T2 camera equipped with an astigmatic (IQ.SPECT) or conventional parallel-hole collimator (Conv.SPECT). SPECT images were initially reconstructed as currently recommended for clinical routine. The heterogeneity in recorded activity from the 17 LV segments gradually increased between baseline and motions simulated at 5- and 10-mm amplitudes with all cameras, although being higher for Anger- than CZT-cameras at each step and resulting in a higher mean number of artifactual abnormal segments (at 10-mm amplitude, Conv.SPECT: 3.7; IQ.SPECT: 1.8, Discovery: 0.7, DSPECT: 0). However, this vulnerability to motion was markedly (1) decreased for Conv.SPECT reconstructed without the recommended Resolution Recovery algorithm and (2) increased for DSPECT reconstructed without the recommended cardiac model. CZT-cameras and especially the DSPECT appear less vulnerable to small cardiac motions than Anger-cameras although these differences are strongly dependent on reconstruction parameters.


CZT-cameras anger-cameras myocardial perfusion imaging patient motions artifacts 



Conventional SPECT



DNM 530c

Discovery NM530c


Filtered back projection


Full width at half maximum


Interquartile range


Low-energy high resolution


Left ventricle


Ordered subset expectation maximization


Resolution recovery


Single photon emission computed tomography



The authors declare that they have no conflict of interest.

Supplementary material

12350_2017_1175_MOESM1_ESM.pptx (3.8 mb)
Supplementary material 1 (PPTX 3853 kb)


  1. 1.
    Botvinick EH, Zhu YY, O’Connell WJ, Dae MW. A quantitative assessment of patient motion and its effect on myocardial perfusion SPECT images. J Nucl Med 1993;34:303-10.PubMedGoogle Scholar
  2. 2.
    Prigent FM, Hyun M, Berman DS, Rozanski A. Effect of motion on thallium-201 SPECT studies: A simulation and clinical study. J Nucl Med 1993;34:1845-50.PubMedGoogle Scholar
  3. 3.
    Wheat JM, Currie GM. Incidence and characterization of patient motion in myocardial perfusion SPECT: Part 1. J Nucl Med Technol 2004;32:60-5.PubMedGoogle Scholar
  4. 4.
    Cooper JA, Neumann PH, McCandless BK. Effect of patient motion on tomographic myocardial perfusion imaging. J Nucl Med 1992;33:1566-71.PubMedGoogle Scholar
  5. 5.
    Fitzgerald J, Danias PG. Effect of motion on cardiac SPECT imaging: Recognition and motion correction. J Nucl Cardiol 2001;8:701-6.CrossRefPubMedGoogle Scholar
  6. 6.
    Friedman J, Van Train K, Maddahi J, Rozanski A, Prigent F, Bietendorf J, et al. “Upward creep” of the heart: A frequent source of false-positive reversible defects during thallium-201 stress-redistribution SPECT. J Nucl Med 1989;30:1718-22.PubMedGoogle Scholar
  7. 7.
    Sorrell V, Figueroa B, Hansen CL. The “hurricane sign”: Evidence of patient motion artifact on cardiac single-photon emission computed tomographic imaging. J Nucl Cardiol 1996;3:86-8.CrossRefPubMedGoogle Scholar
  8. 8.
    Wheat JM, Currie GM. Impact of patient motion on myocardial perfusion SPECT diagnostic integrity: Part 2. J Nucl Med Technol 2004;32:158-63.PubMedGoogle Scholar
  9. 9.
    Redgate S, Barber DC, Fenner Al-Mohammad A, Taylor JC, Hanney MB, et al. A study to quantify the effect of patient motion and develop methods to detect and correct for motion during myocardial perfusion imaging on a CZT solid-state dedicated cardiac camera. J Nucl Cardiol 2016;23:514-26.CrossRefPubMedGoogle Scholar
  10. 10.
    Allie R, Hutton BF, Prvulovich E, Bomanji J, Michopoulou S, Ben-Haim S. Pitfalls and artifacts using the D-SPECT dedicated cardiac camera. J Nucl Cardiol 2016;23:301-10.CrossRefPubMedGoogle Scholar
  11. 11.
    Kennedy JA, William Strauss H. Motion detection and amelioration in a dedicated cardiac solid-state CZT SPECT device. Med Biol Eng Comput 2017;55:663-71.CrossRefPubMedGoogle Scholar
  12. 12.
    Matsumoto N, Berman DS, Kavanagh PB, Gerlach J, Hayes SW, Lewin HC, et al. Quantitative assessment of motion artifacts and validation of a new motion-correction program for myocardial perfusion SPECT. J Nucl Med 2001;42:687-94.PubMedGoogle Scholar
  13. 13.
    Hesse B, Tägil K, Cuocolo A, Anagnostopoulos C, Bardiés M, Bax J, et al. EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology. Eur J Nucl Med Mol Imaging 2005;32:855-97.CrossRefPubMedGoogle Scholar
  14. 14.
    Imbert L, Poussier S, Franken PR, Songy B, Verger A, Morel O, et al. Compared performance of high-sensitivity cameras dedicated to myocardial perfusion SPECT: A comprehensive analysis of phantom and human images. J Nucl Med 2012;53:1897-903.CrossRefPubMedGoogle Scholar
  15. 15.
    Buechel RR, Herzog BA, Husmann L, Burger IA, Pazhenkottil AP, Treyer V, et al. Ultrafast nuclear myocardial perfusion imaging on a new gamma camera with semiconductor detector technique: First clinical validation. Eur J Nucl Med Mol Imaging 2010;37:773-8.CrossRefPubMedGoogle Scholar
  16. 16.
    Esteves FP, Raggi P, Folks RD, Keidar Z, Askew JW, Rispler S, et al. Novel solid-state-detector dedicated cardiac camera for fast myocardial perfusion imaging: Multicenter comparison with standard dual detector cameras. J Nucl Cardiol 2009;16:927-34.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hebert T, Leahy R. A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors. IEEE Trans Med Imaging 1989;8:194-202.CrossRefPubMedGoogle Scholar
  18. 18.
    Slomka PJ, Patton JA, Berman DS, Germano G. Advances in technical aspects of myocardial perfusion SPECT imaging. J Nucl Cardiol 2009;16:255-76.CrossRefPubMedGoogle Scholar
  19. 19.
    Erlandsson K, Kacperski K, van Gramberg D, Hutton BF. Performance evaluation of D-SPECT: A novel SPECT system for nuclear cardiology. Phys Med Biol 2009;54:2635-49.CrossRefPubMedGoogle Scholar
  20. 20.
    Gambhir SS, Berman DS, Ziffer J, Nagler M, Sandler M, Patton J, et al. A novel high-sensitivity rapid-acquisition single-photon cardiac imaging camera. J Nucl Med 2009;50:635-43.CrossRefPubMedGoogle Scholar
  21. 21.
    Rajaram R, Bhattacharya M, Ding X, Malmin R, Rempel TD, Vija AH et al. Tomographic performance characteristics of the IQ-SPECT system. IEEE Nuclear Science Symposium and Medical Imaging Conference Record 2011.Google Scholar
  22. 22.
    DePuey EG. Advances in SPECT camera software and hardware: Currently available and new on the horizon. J Nucl Cardiol 2012;19:551-81.CrossRefPubMedGoogle Scholar
  23. 23.
    Wolak A, Slomka PJ, Fish MB, Lorenzo S, Acampa W, Berman DS, Germano G. Quantitative myocardial-perfusion SPECT: Comparison of three state-of-the-art software packages. J Nucl Cardiol 2008;15:27-34.CrossRefPubMedGoogle Scholar
  24. 24.
    Sciagrà R, Leoncini M, Marcucci G, Dabizzi RP, Pupi A. Technetium-99m sestamibi imaging to predict left ventricular ejection fraction outcome after revascularisation in patients with chronic coronary artery disease and left ventricular dysfunction: Comparison between baseline and nitrate-enhanced imaging. Eur J Nucl Med 2001;28:680-7.CrossRefPubMedGoogle Scholar
  25. 25.
    De Geeter F, Franken PR, Knapp FF Jr, Bossuyt A. Relationship between blood flow and fatty acid metabolism in subacute myocardial infarction: A study by means of 99mTc-Sestamibi and 123I-beta-methyl-iodo-phenyl pentadecanoic acid. Eur J Nucl Med 1994;21:283-91.PubMedGoogle Scholar
  26. 26.
    Sciagrà R, Pellegri M, Pupi A, Bolognese L, Bisi G, Carnovale V, et al. Prognostic implications of Tc-99m sestamibi viability imaging and subsequent therapeutic strategy in patients with chronic coronary artery disease and left ventricular dysfunction. J Am Coll Cardiol 2000;36:739-45.CrossRefPubMedGoogle Scholar
  27. 27.
    Liu CJ, Cheng JS, Chen YC, Huang YH, Yen RF. A performance comparison of novel cadmium–zinc–telluride camera and conventional SPECT/CT using anthropomorphic torso phantom and water bags to simulate soft tissue and breast attenuation. Ann Nucl Med 2015;29:342-50.CrossRefPubMedGoogle Scholar
  28. 28.
    Zoccarato O, Scabbio C, De Ponti E, Matheoud R, Leva L, Morzenti S, et al. Comparative analysis of iterative reconstruction algorithms with resolution recovery for cardiac SPECT studies. A multi-center phantom study. J Nucl Cardiol 2014;21:135-48.CrossRefPubMedGoogle Scholar
  29. 29.
    Kovalski G, Keidar Z, Frenkel A, Israel O, Azhari H. Correction for respiration artefacts in myocardial perfusion SPECT is more effective when reconstructions supporting collimator detector response compensation are applied. J Nucl Cardiol 2009;16:949-55.CrossRefPubMedGoogle Scholar
  30. 30.
    Pitman AG, Kalff V, Van Every B, Risa B, Barnden LR, Kelly MJ. Effect of mechanically simulated diaphragmatic respiratory motion on myocardial SPECT processed with and without attenuation correction. J Nucl Med 2002;43:1259-67.PubMedGoogle Scholar
  31. 31.
    Roujol S, Anter E, Josephson ME, Nezafat R. Characterization of respiratory and cardiac motion from electro-anatomical mapping data for improved fusion of MRI to left ventricular electrograms. PLoS ONE 2013;8:e78852.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2018

Authors and Affiliations

  • Julien Salvadori
    • 1
  • Yolande Petegnief
    • 2
  • Remi Sabbah
    • 2
  • Olivier Morel
    • 2
  • Hatem Boulahdour
    • 2
  • Gilles Karcher
    • 3
    • 4
  • Pierre-Yves Marie
    • 3
    • 4
    • 5
  • Laetitia Imbert
    • 1
    • 3
    • 6
    • 7
  1. 1.Institut de Cancérologie de LorraineUniversité de LorraineNancyFrance
  2. 2.CHU-Besançon, Université de Franche-Comté, Service de Médecine NucléaireBesançonFrance
  3. 3.CHRU-Nancy, Université de Lorraine, Plateforme NancyclotepNancyFrance
  4. 4.Médecine Nucléaire, Hôpital de Brabois, CHRU-Nancy, Université de Lorraine, Service de Médecine NucléaireNancyFrance
  5. 5.Université de Lorraine, INSERM, UMR-1116 DCACNancyFrance
  6. 6.Université de Lorraine, INSERM, UMR-947 IADINancyFrance
  7. 7.Médecine Nucléaire, Hôpital de Brabois, CHRU-NancyNancyFrance

Personalised recommendations