My warranty has expired: I need to be retested

  • Mario Petretta
  • Wanda Acampa
  • Roberta Assante
  • Emilia Zampella
  • Carmela Nappi
  • Andrea Petretta
  • Alberto Cuocolo
Theme Article


The concept of warranty period, the duration of time during which the patient’s risk remains low, is appealing. However, some points remain to be resolved before its translation in the clinical arena. Methodological issues should be standardized in order to compare the results of studies in different patient populations. Also, the definition of a “normal” study should always take into consideration the history of prior revascularization, the achieved level of exercise, and the stressor used. The promise of warranty can be questioned by the patient’s baseline demographic and clinical characteristics and may also be influenced by life-style modification in the course of the follow-up. The “warranty period” concept should shift from data reflecting the time to a cardiac event to the development of ischemia, given an opportunity for intervention before a cardiac event occurs. In this context, clarify the role of serial imaging can be extremely useful, in particular to evaluate if and when retesting a patient after a normal scan.


Myocardial perfusion imaging SPECT gated SPECT ischemia myocardial outcomes research 



M. Petretta, W. Acampa, R. Assante, E. Zampella, C. Nappi, A. Petretta, A. Cuocolo declare that they have no conflict of interest.

Supplementary material

12350_2017_1154_MOESM1_ESM.pptx (602 kb)
Supplementary material 1 (PPTX 602 kb)


  1. 1.
    Blischke WR, Karim MR, Murthy DNP. An overview. Warranty data collection and analysis. In: Springer series in reliability engineering. London: Springer; 2011. p. 1-15.Google Scholar
  2. 2.
    Hachamovitch R, Berman D, Kiat H, Cohen I, Cabico A, Diamond G. What is the warranty for normal exercise sestamibi SPECT? Circulation 1995;92(8):2491.Google Scholar
  3. 3.
    Schinkel AF, Elhendy A, Van Domburg RT, Bax JJ, Valkema R, Roelandt JR, et al. Long-term prognostic value of dobutamine stress 99mTc-sestamibi SPECT: single-center experience with 8-year follow-up. Radiology 2002;225:701-6.CrossRefPubMedGoogle Scholar
  4. 4.
    Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, Budaj A, et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 2013;34:2949-3003.CrossRefPubMedGoogle Scholar
  5. 5.
    Hachamovitch R, Hayes S, Friedman JD, Cohen I, Shaw LJ, Germano G, et al. Determinants of risk and its temporal variation in patients with normal stress myocardial perfusion scans: what is the warranty period of a normal scan? J Am Coll Cardiol 2003;41:1329-40.CrossRefPubMedGoogle Scholar
  6. 6.
    Rozanski A, Gransar H, Min JK, Hayes SW, Friedman JD, Thomson LE, et al. Long-term mortality following normal exercise myocardial perfusion SPECT according to coronary disease risk factors. J Nucl Cardiol 2014;21:341-50.CrossRefPubMedGoogle Scholar
  7. 7.
    Ottenhof MJ, Wai MC, Boiten HJ, Korbee RS, Valkema R, van Domburg RT, et al. 12-Year outcome after normal myocardial perfusion SPECT in patients with known coronary artery disease. J Nucl Cardiol 2013;20:748-54.CrossRefPubMedGoogle Scholar
  8. 8.
    Nakanishi R, Gransar H, Slomka P, Arsanjani R, Shalev A, Otaki Y, et al. Predictors of high-risk coronary artery disease in subjects with normal SPECT myocardial perfusion imaging. J Nucl Cardiol 2016;23:530-41.CrossRefPubMedGoogle Scholar
  9. 9.
    Elhendy A, Schinkel A, Bax JJ, van Domburg RT, Poldermans D. Long-term prognosis after a normal exercise stress Tc-99m sestamibi SPECT study. J Nucl Cardiol 2003;10:261-6.CrossRefPubMedGoogle Scholar
  10. 10.
    Acampa W, Evangelista L, Petretta M, Liuzzi R, Cuocolo A. Usefulness of stress cardiac single-photon emission computed tomographic imaging late after percutaneous coronary intervention for assessing cardiac events and time to such events. Am J Cardiol 2007;100:436-41.CrossRefPubMedGoogle Scholar
  11. 11.
    Carryer DJ, Askew JW, Hodge DO, Miller TD, Gibbons RJ. The timing and impact of follow-up studies after normal stress single-photon emission computed tomography sestamibi studies. Circ Cardiovasc Imaging 2010;3:520-6.CrossRefPubMedGoogle Scholar
  12. 12.
    Schinkel AF, Boiten HJ, van der Sijde JN, Ruitinga PR, Sijbrands EJ, Valkema R, et al. 15-Year outcome after normal exercise Tc-99m sestamibi myocardial perfusion imaging: what is the duration of low risk after a normal scan? J Nucl Cardiol 2012;19:901-6.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Simonsen JA, Gerke O, Rask CK, Tamadoni M, Thomassen A, Hess S, et al. Prognosis in patients with suspected or known ischemic heart disease and normal myocardial perfusion: long-term outcome and temporal risk variations. J Nucl Cardiol 2013;20:347-57.CrossRefPubMedGoogle Scholar
  14. 14.
    Acampa W, Petretta M, Cuocolo R, Daniele S, Cantoni V, Cuocolo A. Warranty period of normal stress myocardial perfusion imaging in diabetic patients: a propensity score analysis. J Nucl Cardiol 2014;21:50-6.CrossRefPubMedGoogle Scholar
  15. 15.
    Nudi F, Neri G, Schillaci O, Pinto A, Procaccini E, Vetere M, et al. Time to and risk of cardiac events after myocardial perfusion scintigraphy. J Cardiol 2015;66:125-9.CrossRefPubMedGoogle Scholar
  16. 16.
    Romero-Farina G, Candell-Riera J, Aguadé-Bruix S, Ferreira-González I, Cuberas-Borrós G, Pizzi N, et al. Warranty periods for normal myocardial perfusion stress SPECT. J Nucl Cardiol 2015;22:44-54.CrossRefPubMedGoogle Scholar
  17. 17.
    Navare SM, Mather JF, Shaw LJ, Fowler MS, Heller GV. Comparison of risk stratification with pharmacologic and exercise stress myocardial perfusion imaging: a meta-analysis. J Nucl Cardiol 2004;11:551-6.CrossRefPubMedGoogle Scholar
  18. 18.
    Cox DR. Regression models and life-tables. J R Stat Soc B 1972;34:187-220.Google Scholar
  19. 19.
    Barraclough H, Simms L, Govindan R. Biostatistics primer: what a clinician ought to know: hazard ratios. J Thorac Oncol 2011;6:978-82.CrossRefPubMedGoogle Scholar
  20. 20.
    Hagar Y, Dignam JJ, Dukic V. Flexible modeling of the hazard rate and treatment effects in long-term survival studies. Stat Methods Med Res 2017;26:2455-80.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Andersen PK, Gill RD. Cox’s regression model for counting processes: a large sample study. Ann Stat 1982;10:1100-20.CrossRefGoogle Scholar
  22. 22.
    Reid M. A conversation with Sir David Cox. Stat Sci 1994;9:439-55.CrossRefGoogle Scholar
  23. 23.
    George B, Seals S, Aban I. Survival analysis and regression models. J Nucl Cardiol 2014;21:686-94.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Weibull W. A Statistical Distribution Function of Wide Applicability. J Appl Mech 1951;18:293-7.Google Scholar
  25. 25.
    Prentice RL, Kalbfleisch JD. Hazard rate models with covariates. Biometrics 1979;35:25-39.CrossRefPubMedGoogle Scholar
  26. 26.
    van Houwelingen HC, Putter H. Dynamic prediction in clinical survival analysis. Boca Raton: Chapman & Hall; 2011.Google Scholar
  27. 27.
    Royston P, Parmar MK. Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modeling and estimation of treatment effects. Stat Med 2002;21:2175-97.CrossRefPubMedGoogle Scholar
  28. 28.
    Efron B. Logistic regression, survival analysis, and the Kaplan-Meier Curve. J Am Stat Assoc 1988;83:414-25.CrossRefGoogle Scholar
  29. 29.
    El-Hajj S, AlJaroudi WA, Farag A, Bleich S, Manaoragada P, Iskandrian AE, et al. Effect of changes in perfusion defect size during serial regadenoson myocardial perfusion imaging on cardiovascular outcomes in high-risk patients. J Nucl Cardiol 2016;23:101-12.CrossRefPubMedGoogle Scholar
  30. 30.
    Iskandrian AE, Dilsizian V, Garcia EV, Beanlands RS, Cerqueira M, Soman P, et al. Myocardial perfusion imaging: lessons learned and work to be done-update. J Nucl Cardiol. 2017. Scholar
  31. 31.
    Asar Ö, Ritchie J, Kalra PA, Diggle PJ. Joint modeling of repeated measurement and time-to-event data: an introductory tutorial. Int J Epidemiol 2015;44:334-44.CrossRefPubMedGoogle Scholar
  32. 32.
    Petretta M, Salvatore M, Cuocolo A. Immortality time and serial myocardial perfusion imaging: only those who do not die may repeat the exam. J Nucl Cardiol 2016;23:113-6.CrossRefPubMedGoogle Scholar
  33. 33.
    Rizopoulos D. JM: an R package for the joint modeling of longitudinal and time-to-event data. J Stat Soft 2010;35:1-33.CrossRefGoogle Scholar
  34. 34.
    Crowther MJ, Abrams KR, Lambert PC. Joint modeling of longitudinal and survival data. Stata J 2013;13:165-84.Google Scholar

Copyright information

© American Society of Nuclear Cardiology 2018

Authors and Affiliations

  • Mario Petretta
    • 1
  • Wanda Acampa
    • 2
    • 3
  • Roberta Assante
    • 2
  • Emilia Zampella
    • 2
  • Carmela Nappi
    • 2
  • Andrea Petretta
    • 4
  • Alberto Cuocolo
    • 2
  1. 1.Department of Translational Medical SciencesUniversity Federico IINaplesItaly
  2. 2.Department of Advanced Biomedical SciencesUniversity Federico IINaplesItaly
  3. 3.Institute of Biostructure and BioimagingNational Council of ResearchNaplesItaly
  4. 4.Department of ArrhythmologyMaria Cecilia Hospital, GVM Care and ResearchCotignolaItaly

Personalised recommendations