Skip to main content
Log in

Catheter-based functional metrics of the coronary circulation

  • Review Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

In patients with stable chest pain, decision making about treatment strategy should be based on anatomical and functional information on the coronary circulation. Traditionally, the functional data are obtained by non-invasive testing which aims at detecting and localizing ‘myocardial ischemia.’ Yet, the diagnostic accuracy of diagnostic testing is over-rated in the literature, so that in clinical practice, a sizable proportion of patients undergo a coronary angiogram without prior useful functional information. Therefore, several methods have been developed to obtain similar information in the catheterization laboratory. Here we review briefly some of these methods. Some of them are used routinely in clinical practice, and others are under development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

CAD:

Coronary artery disease

CFR:

Coronary flow reserve

FFR:

Fractional flow reserve

FFRCT :

Computed tomography-derived fractional flow reserve

iFR:

Instantaneous wave-free ratio

IMR:

Index of microvascular resistance

IVUS:

Intravascular ultrasound

LAD:

Left anterior descending artery

OCT:

Optical coherence tomography

P a :

Proximal (aortic) pressure

P d :

Distal coronary pressure

P w :

Coronary occlusive pressure

P v :

Venous pressure

PET:

Positron emission tomography

Q :

Flow

QCA:

Quantitative coronary angiography

R :

Resistance

RCT:

Randomized controlled trial

T mn :

Mean transit time

References

  1. Genders TS, Steyerberg EW, Hunink MG, Nieman K, Galema TW, Mollet NR, et al. Prediction model to estimate presence of coronary artery disease: retrospective pooled analysis of existing cohorts. BMJ. 2012;344:e3485.

    Article  Google Scholar 

  2. Min JK, Berman D. Anatomic and functional assessment of coronary artery disease: convergence of 2 aims in a single setting. Circ Cardiovasc Imaging. 2009;2:163–5.

    Article  Google Scholar 

  3. Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, Budaj A, et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. European heart journal. 2013;34:2949–3003.

    Article  Google Scholar 

  4. Task Force M, Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, et al. ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013;2013(34):2949–3003.

    Google Scholar 

  5. Topol EJ, Ellis SG, Cosgrove DM, Bates ER, Muller DW, Schork NJ, et al. Analysis of coronary angioplasty practice in the United States with an insurance-claims data base. Circulation. 1993;87:1489–97.

    Article  CAS  Google Scholar 

  6. Lin GA, Dudley RA, Lucas FL, Malenka DJ, Vittinghoff E, Redberg RF. Frequency of stress testing to document ischemia prior to elective percutaneous coronary intervention. JAMA. 2008;300:1765–73.

    Article  CAS  Google Scholar 

  7. Pijls NH, van Son JA, Kirkeeide RL, De Bruyne B, Gould KL. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation. 1993;87:1354–67.

    Article  CAS  Google Scholar 

  8. De Bruyne B, Baudhuin T, Melin JA, Pijls NH, Sys SU, Bol A, et al. Coronary flow reserve calculated from pressure measurements in humans. Validation with positron emission tomography. Circulation. 1994;89:1013–22.

    Article  Google Scholar 

  9. De Bruyne B, Hersbach F, Pijls NH, Bartunek J, Bech JW, Heyndrickx GR, et al. Abnormal epicardial coronary resistance in patients with diffuse atherosclerosis but “Normal” coronary angiography. Circulation. 2001;104:2401–6.

    Article  Google Scholar 

  10. De Bruyne B, Pijls NH, Paulus WJ, Vantrimpont PJ, Sys SU, Heyndrickx GR. Transstenotic coronary pressure gradient measurement in humans: in vitro and in vivo evaluation of a new pressure monitoring angioplasty guide wire. J Am Coll Cardiol. 1993;22:119–26.

    Article  Google Scholar 

  11. Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van’ t Veer M, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360:213–24.

    Article  CAS  Google Scholar 

  12. De Bruyne B, Fearon WF, Pijls NH, Barbato E, Tonino P, Piroth Z, et al. Fractional flow reserve-guided PCI for stable coronary artery disease. N Engl J Med. 2014;371:1208–17.

    Article  Google Scholar 

  13. Pijls NH, De Bruyne B, Peels K, Van Der Voort PH, Bonnier HJ, Bartunek JKJJ, et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med. 1996;334:1703–8.

    Article  CAS  Google Scholar 

  14. Pijls NH, Van Gelder B, Van der Voort P, Peels K, Bracke FA, Bonnier HJ, et al. Fractional flow reserve. A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation. 1995;92:3183–93.

    Article  CAS  Google Scholar 

  15. De Bruyne B, Pijls NH, Bartunek J, Kulecki K, Bech JW, De Winter H, et al. Fractional flow reserve in patients with prior myocardial infarction. Circulation. 2001;104:157–62.

    Article  Google Scholar 

  16. Zimmermann FM, Ferrara A, Johnson NP, van Nunen LX, Escaned J, Albertsson P, et al. Deferral vs. performance of percutaneous coronary intervention of functionally non-significant coronary stenosis: 15-year follow-up of the DEFER trial. Eur Heart J. 2015;36:3182–8.

    Article  Google Scholar 

  17. Pijls NH, van Schaardenburgh P, Manoharan G, Boersma E, Bech JW, van’t Veer M, et al. Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER Study. J Am Coll Cardiol. 2007;49:2105–11.

    Article  Google Scholar 

  18. Berger A, Botman KJ, MacCarthy PA, Wijns W, Bartunek J, Heyndrickx GR, et al. Long-term clinical outcome after fractional flow reserve-guided percutaneous coronary intervention in patients with multivessel disease. J Am Coll Cardiol. 2005;46:438–42.

    Article  Google Scholar 

  19. van Nunen LX, Zimmermann FM, Tonino PA, Barbato E, Baumbach A, Engstrom T, et al. Fractional flow reserve versus angiography for guidance of PCI in patients with multivessel coronary artery disease (FAME): 5-year follow-up of a randomised controlled trial. Lancet. 2015;386:1853–60.

    Article  Google Scholar 

  20. Pijls NH, Fearon WF, Tonino PA, Siebert U, Ikeno F, Bornschein B, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study. J Am Coll Cardiol. 2010;56:177–84.

    Article  Google Scholar 

  21. De Bruyne B, Pijls NH, Kalesan B, Barbato E, Tonino PA, Piroth Z, et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med. 2012;367:991–1001.

    Article  Google Scholar 

  22. Johnson NP, Toth GG, Lai D, Zhu H, Acar G, Agostoni P, et al. Prognostic value of fractional flow reserve: linking physiologic severity to clinical outcomes. J Am Coll Cardiol. 2014;64:1641–54.

    Article  Google Scholar 

  23. Hamilos M, Muller O, Cuisset T, Ntalianis A, Chlouverakis G, Sarno G, et al. Long-term clinical outcome after fractional flow reserve-guided treatment in patients with angiographically equivocal left main coronary artery stenosis. Circulation. 2009;120:1505–12.

    Article  Google Scholar 

  24. Koo BK, Park KW, Kang HJ, Cho YS, Chung WY, Youn TJ, et al. Physiological evaluation of the provisional side-branch intervention strategy for bifurcation lesions using fractional flow reserve. Eur Heart J. 2008;29:726–32.

    Article  Google Scholar 

  25. Park SJ, Ahn JM, Pijls NH, De Bruyne B, Shim EB, Kim YT, et al. Validation of functional state of coronary tandem lesions using computational flow dynamics. Am J Cardiol. 2012;110:1578–84.

    Article  Google Scholar 

  26. Nam CW, Mangiacapra F, Entjes R, Chung IS, Sels JW, Tonino PA, et al. Functional SYNTAX score for risk assessment in multivessel coronary artery disease. J Am Coll Cardiol. 2011;58:1211–8.

    Article  Google Scholar 

  27. Sels JW, Tonino PA, Siebert U, Fearon WF, Van’t Veer M, De Bruyne B, et al. Fractional flow reserve in unstable angina and non-ST-segment elevation myocardial infarction experience from the FAME (Fractional flow reserve versus Angiography for Multivessel Evaluation) study. JACC Cardiovasc Interv. 2011;4:1183–9.

    Article  Google Scholar 

  28. Samady H, McDaniel M, Veledar E, De Bruyne B, Pijls NH, Fearon WF, et al. Baseline fractional flow reserve and stent diameter predict optimal post-stent fractional flow reserve and major adverse cardiac events after bare-metal stent deployment. JACC Cardiovasc Interv. 2009;2:357–63.

    Article  Google Scholar 

  29. Toth G, Hamilos M, Pyxaras S, Mangiacapra F, Nelis O, De Vroey F, et al. Evolving concepts of angiogram: fractional flow reserve discordances in 4000 coronary stenoses. Eur Heart J. 2014;35:2831–8.

    Article  Google Scholar 

  30. Toth G, De Bruyne B, Casselman F, De Vroey F, Pyxaras S, Di Serafino L, et al. Fractional flow reserve-guided versus angiography-guided coronary artery bypass graft surgery. Circulation. 2013;128:1405–11.

    Article  Google Scholar 

  31. Di Serafino L, De Bruyne B, Mangiacapra F, Bartunek J, Agostoni P, Vanderheyden M, et al. Long-term clinical outcome after fractional flow reserve- versus angio-guided percutaneous coronary intervention in patients with intermediate stenosis of coronary artery bypass grafts. Am Heart J. 2013;166:110–8.

    Article  Google Scholar 

  32. Puymirat E, Peace A, Mangiacapra F, Conte M, Ntarladimas Y, Bartunek J, et al. Long-term clinical outcome after fractional flow reserve-guided percutaneous coronary revascularization in patients with small-vessel disease. Circ Cardiovasc Interv. 2012;5:62–8.

    Article  Google Scholar 

  33. Adjedj J, De Bruyne B, Flore V, Di Gioia G, Ferrara A, Pellicano M, et al. Significance of intermediate values of fractional flow reserve in patients with coronary artery disease. Circulation. 2016;133:502–8.

    Article  CAS  Google Scholar 

  34. Muller O, Mangiacapra F, Ntalianis A, Verhamme KM, Trana C, Hamilos M, et al. Long-term follow-up after fractional flow reserve-guided treatment strategy in patients with an isolated proximal left anterior descending coronary artery stenosis. JACC Cardiovasc Interv. 2011;4:1175–82.

    Article  Google Scholar 

  35. Nam CW, Mangiacapra F, Entjes R, Chung IS, Sels JW, Tonino PA, et al. Functional SYNTAX score for risk assessment in multivessel coronary artery disease. J Am Coll Cardiol. 2011;58:1211–8.

    Article  Google Scholar 

  36. De Bruyne B. Multivessel disease: from reasonably incomplete to functionally complete revascularization. Circulation. 2012;125:2557–9.

    Article  Google Scholar 

  37. De Bruyne B, McFetridge K, Toth G. Angiography and fractional flow reserve in daily practice: why not (finally) use the right tools for decision-making? Eur Heart J. 2013;34:1321–2.

    Article  Google Scholar 

  38. Sen S, Escaned J, Malik IS, Mikhail GW, Foale RA, Mila R, et al. Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis: results of the ADVISE (ADenosine Vasodilator Independent Stenosis Evaluation) study. J Am Coll Cardiol. 2012;59:1392–402.

    Article  CAS  Google Scholar 

  39. Jeremias A, Maehara A, Genereux P, Asrress KN, Berry C, De Bruyne B, et al. Multicenter core laboratory comparison of the instantaneous wave-free ratio and resting Pd/Pa with fractional flow reserve: the RESOLVE study. J Am Coll Cardiol. 2014;63:1253–61.

    Article  Google Scholar 

  40. Johnson NP, Kirkeeide RL, Asrress KN, Fearon WF, Lockie T, Marques KM, et al. Does the instantaneous wave-free ratio approximate the fractional flow reserve? J Am Coll Cardiol. 2013;61:1428–35.

    Article  Google Scholar 

  41. Berry C, van ‘t Veer M, Witt N, Kala P, Bocek O, Pyxaras SA, et al. VERIFY (VERification of Instantaneous wave-Free ratio and fractional flow reserve for the assessment of coronary artery stenosis severity in everydaY practice): a multicenter study in consecutive patients. J Am Coll Cardiol. 2013;61:1421–7.

    Article  Google Scholar 

  42. Johnson NP, Jeremias A, Zimmermann FM, Adjedj J, Witt N, Hennigan B, et al. Continuum of vasodilator stress from rest to contrast medium to adenosine hyperemia for fractional flow reserve assessment. JACC Cardiovasc Interv. 2016;9:757–67.

    Article  Google Scholar 

  43. Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol. 1974;33:87–94.

    Article  CAS  Google Scholar 

  44. Kern MJ. A simplified method to measure coronary blood flow velocity in patients: validation and application of a Judkins-style Doppler-tipped angiographic catheter. Am Heart J. 1990;120:1202–12.

    Article  CAS  Google Scholar 

  45. Wilson RF, White CW. Measurement of maximal coronary flow reserve: a technique for assessing the physiologic significance of coronary arterial lesions in humans. Herz. 1987;12:163–76.

    CAS  PubMed  Google Scholar 

  46. Barbato E, Aarnoudse W, Aengevaeren WR, Werner G, Klauss V, Bojara W, et al. Validation of coronary flow reserve measurements by thermodilution in clinical practice. Eur Heart J. 2004;25:219–23.

    Article  Google Scholar 

  47. de Bruyne B, Bartunek J, Sys SU, Pijls NH, Heyndrickx GR, Wijns W. Simultaneous coronary pressure and flow velocity measurements in humans. Feasibility, reproducibility, and hemodynamic dependence of coronary flow velocity reserve, hyperemic flow versus pressure slope index, and fractional flow reserve. Circulation. 1996;94:1842–9.

    Article  Google Scholar 

  48. De Bruyne B, Oldroyd KG, Pijls NH. Microvascular (Dys)function and clinical outcome in stable coronary disease. J Am Coll Cardiol. 2016;67:1170–2.

    Article  Google Scholar 

  49. Cortigiani L, Rigo F, Gherardi S, Galderisi M, Bovenzi F, Picano E, et al. Prognostic effect of coronary flow reserve in women versus men with chest pain syndrome and normal dipyridamole stress echocardiography. Am J Cardiol. 2010;106:1703–8.

    Article  Google Scholar 

  50. Johnson NP, Kirkeeide RL, Gould KL. Is discordance of coronary flow reserve and fractional flow reserve due to methodology or clinically relevant coronary pathophysiology? JACC Cardiovasc Imaging. 2012;5:193–202.

    Article  Google Scholar 

  51. Meuwissen M, Chamuleau SA, Siebes M, Schotborgh CE, Koch KT, de Winter RJ, et al. Role of variability in microvascular resistance on fractional flow reserve and coronary blood flow velocity reserve in intermediate coronary lesions. Circulation. 2001;103:184–7.

    Article  CAS  Google Scholar 

  52. Fearon WF, Balsam LB, Farouque HM, Caffarelli AD, Robbins RC, Fitzgerald PJ, et al. Novel index for invasively assessing the coronary microcirculation. Circulation. 2003;107:3129–32.

    Article  Google Scholar 

  53. De Bruyne B, Barbato E. Quantitative assessment of the coronary microvasculature: new tools for the black box. Circulation. 2013;127:2378–9.

    Article  Google Scholar 

  54. Fearon WF, Low AF, Yong AS, McGeoch R, Berry C, Shah MG, et al. Prognostic value of the Index of Microcirculatory Resistance measured after primary percutaneous coronary intervention. Circulation. 2013;127:2436–41.

    Article  Google Scholar 

  55. Aarnoudse W, Fearon WF, Manoharan G, Geven M, van de Vosse F, Rutten M, et al. Epicardial stenosis severity does not affect minimal microcirculatory resistance. Circulation. 2004;110:2137–42.

    Article  Google Scholar 

  56. Ng MK, Yong AS, Ho M, Shah MG, Chawantanpipat C, O’Connell R, et al. The index of microcirculatory resistance predicts myocardial infarction related to percutaneous coronary intervention. Circ Cardiovasc Interv. 2012;5:515–22.

    Article  Google Scholar 

  57. Hennigan B, Layland J, Fearon WF, Oldroyd KG. Fractional flow reserve and the index of microvascular resistance in patients with acute coronary syndromes. EuroIntervention. 2014;10(Suppl T):T55–63.

    Article  Google Scholar 

  58. Aarnoudse W, Van’t Veer M, Pijls NH, Ter Woorst J, Vercauteren S, Tonino P, et al. Direct volumetric blood flow measurement in coronary arteries by thermodilution. J Am Coll Cardiol. 2007;50:2294–304.

    Article  Google Scholar 

  59. van’t Veer M, Geven MC, Rutten MC, van der Horst A, Aarnoudse WH, Pijls NH, et al. Continuous infusion thermodilution for assessment of coronary flow: Theoretical background and in vitro validation. Med Eng Phys. 2009;31:688–94.

    Article  Google Scholar 

  60. Van’t Veer M, Adjedj J, Wijnbergen I, Toth G, Rutten M, Barbato E, et al. Novel monorail infusion catheter for volumetric coronary blood flow measurement in humans, in vitro validation. EuroIntervention. 2016;12:701–7.

    Article  Google Scholar 

  61. Xaplanteris P, Adjedj J, Toth G, Ferrara A, Pellicano M, Flore V, et al. Validation of a novel catheter for thermodilution-derived measurement of absolute coronary blood flow and microvascular resistances. Eur Heart J. 2016;37(suppl 1):606. doi:10.1093/eurheartj/ehw433

  62. Bugiardini R. Bairey Merz CN. Angina with “normal” coronary arteries: a changing philosophy. JAMA. 2005;293:477–84.

    Article  CAS  Google Scholar 

  63. Park SJ, Ahn JM, Kang SJ. Paradigm shift to functional angioplasty: new insights for fractional flow reserve- and intravascular ultrasound-guided percutaneous coronary intervention. Circulation. 2011;124:951–7.

    Article  Google Scholar 

  64. Qaseem A, Fihn SD, Williams S, Dallas P, Owens DK, Shekelle P. Diagnosis of stable ischemic heart disease: summary of a clinical practice guideline from the American College of Physicians/American College of Cardiology Foundation/American Heart Association/American Association for Thoracic Surgery/Preventive Cardiovascular Nurses Association/Society of Thoracic Surgeons. Ann Intern Med. 2012;157:729–34.

    Article  Google Scholar 

  65. Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol. 2011;58:1989–97.

    Article  Google Scholar 

  66. Min JK, Leipsic J, Pencina MJ, Berman DS, Koo BK, van Mieghem C, et al. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA. 2012;308:1237–45.

    Article  CAS  Google Scholar 

  67. Gaur S, Bezerra HG, Lassen JF, Christiansen EH, Tanaka K, Jensen JM, et al. Fractional flow reserve derived from coronary CT angiography: variation of repeated analyses. J Cardiovasc Comput Tomogr. 2014;8:307–14.

    Article  Google Scholar 

  68. Norgaard BL, Gaur S, Leipsic J, Ito H, Miyoshi T, Park SJ, et al. Influence of Coronary Calcification on the Diagnostic Performance of CT Angiography Derived FFR in Coronary Artery Disease: A Substudy of the NXT Trial. JACC Cardiovasc Imaging. 2015;8:1045–55.

    Article  Google Scholar 

  69. Douglas PS, Pontone G, Hlatky MA, Patel MR, Norgaard BL, Byrne RA, et al. Clinical outcomes of fractional flow reserve by computed tomographic angiography-guided diagnostic strategies vs. usual care in patients with suspected coronary artery disease: the prospective longitudinal trial of FFR(CT): outcome and resource impacts study. Eur Heart J. 2015;36:3359–67.

    Article  CAS  Google Scholar 

  70. Gaur S, Ovrehus KA, Dey D, Leipsic J, Botker HE, Jensen JM, et al. Coronary plaque quantification and fractional flow reserve by coronary computed tomography angiography identify ischaemia-causing lesions. Eur Heart J. 2016;37:1220–7.

    Article  Google Scholar 

Download references

Disclosure

Dr Xaplanteris has received research grants from the European Association of Percutaneous Cardiovascular Interventions (EAPCI) and the Hellenic Cardiological Society (HCS) for 2016. Dr. Barbato reports institutional research grants and speaker’s fees from St. Jude Medical not related to this manuscript to the Cardiovascular Center Aalst. Dr. De Bruyne is a shareholder for Siemens,GE, Bayer, Philips, HeartFlow, Edwards Life Sciences, Sanofi, Omega Pharma; The Cardiovascular Center Aalst has received grant support from Abbott, Boston Scientific, Biotronik, and St Jude Medical and receives consulting fees on his behalf from St. Jude Medical, Opsens, and Boston Scientific outside of the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard De Bruyne MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xaplanteris, P., Barbato, E. & De Bruyne, B. Catheter-based functional metrics of the coronary circulation. J. Nucl. Cardiol. 24, 1178–1189 (2017). https://doi.org/10.1007/s12350-016-0652-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-016-0652-7

Keywords

Navigation