Skip to main content
Log in

Successful innovation: A time for change?

  • Debate Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Innovation plays an important role in the advancement of nuclear cardiology, meeting the need for reduced exposure to radiation, and maintaining and improving image quality. As we innovate, it is important to understand the impact of these improvements on the clinical and research knowledge base that has made nuclear cardiology such a powerful clinical tool. The need for comparative studies insuring stability in the clinical applicability of our current guidelines and use of the prognostic power of radionuclide myocardial perfusion imaging in clinical practice is essential for new and innovative techniques. The existing data demonstrating the significant differences that can occur with the innovative techniques is explored. The need for tools to insure comparable data is available as we begin to utilize registries to inform our clinical practice and research will be an important part of the future of nuclear cardiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cerqueira MD, Allman KC, Ficaro EP, Hansen CL, Nichols KJ, Thompson RC, et al. Information statement recommendations for reducing radiation exposure in myocardial perfusion imaging. J Nucl Cardiol 2010;17:709. doi:10.1007/s12350-010-9244-0.

    Article  PubMed  Google Scholar 

  2. Sharir T, Ben-Haim S, Merzon K, Prochorov V, Dickman D, Ben-Haim S. High-speed myocardial perfusion imaging. JACC Cardiovasc Imaging 2008;1:156. doi:10.1016/j.jcmg.2007.12.004.

    Article  PubMed  Google Scholar 

  3. Garcia EV, Faber TL. New trends in camera and software technology in nuclear cardiology. Cardiol Clin 2009;27:227-36. doi:10.1016/j.ccl.2008.12.002.

    Article  PubMed  Google Scholar 

  4. Gilmore B. An investigation of the magnitude and causes of count loss artifacts in SPECT imaging. J Nucl Med 1991;32:1771-6.

    PubMed  Google Scholar 

  5. Forstrom LA, Dunn WL, O’Connor MK, Decklever TD, Hardyman TJ, Howarth DM. Technical pitfalls in image acquisition, processing, and display. Semin Nucl Med 1996;26:278-94.

    Article  CAS  PubMed  Google Scholar 

  6. Hansen CL. Digital image processing for clinicians, part III: SPECT reconstruction. J Nucl Cardiol 2002;9:542-9.

    Article  PubMed  Google Scholar 

  7. Leong LK, Kruger RL, O’Connor MK. A comparison of the uniformity requirements for SPECT image reconstruction using FBP and OSEM techniques. J Nucl Med Technol 2001;29:79-83.

    CAS  PubMed  Google Scholar 

  8. Heller G, Mann A, Hendel R. Nuclear cardiology: Technical applications: Technical applications. New York: McGraw-Hill; 2008.

    Google Scholar 

  9. DePuey EG. Advances in cardiac processing software. Semin Nucl Med 2014;44:252. doi:10.1053/j.semnuclmed.2014.04.001.

    Article  Google Scholar 

  10. Bruyant PP. Analytic and iterative reconstruction algorithms in SPECT. J Nucl Med 2002;43:1343-58.

    PubMed  Google Scholar 

  11. Sharir T, Germano G, Waechter PB, Kavanagh PB, Areeda JS, Gerlach J, et al. A new algorithm for the quantitation of myocardial perfusion SPECT. II: validation and diagnostic yield. J Nucl Med 2000;41:720-7.

    CAS  PubMed  Google Scholar 

  12. Alenius S, Ruotsalainen U. Bayesian image reconstruction for emission tomography based on median root prior. Eur J Nucl Med 1997;24:258-65.

    CAS  PubMed  Google Scholar 

  13. Piccinelli M, Garcia EV. Advances in software for faster procedure and lower radiotracer dose myocardial perfusion imaging. Prog Cardiovasc Dis 2014;57:579-87. doi:10.1016/j.pcad.2014.12.006.

    Article  PubMed  Google Scholar 

  14. DePuey EG. Achievements in nuclear cardiology/CME article advances in SPECT camera software and hardware: Currently available and new on the horizon. J Nucl Cardiol 2012;19:551. doi:10.1007/s12350-012-9544-7.

    Article  PubMed  Google Scholar 

  15. Shaw LJ, Berman DS, Maron DJ, Mancini GJ, Hayes SW, Hartigan PM, et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: Results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation 2008;117:1283-91. doi:10.1161/CIRCULATIONAHA.107.743963.

    Article  PubMed  Google Scholar 

  16. O’Keefe JH, Bateman TM, Ligon RW, Case J, Cullom J, Barnhart C, et al. Outcome of medical versus invasive treatment strategies for non-high-risk ischemic heart disease. J Nucl Cardiol 1998;5:28-33.

    Article  PubMed  Google Scholar 

  17. Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation 2003;107:2900-7. doi:10.1161/01.CIR.0000072790.23090.41.

    Article  PubMed  Google Scholar 

  18. Hachamovitch R, Rozanski A, Hayes SW, Thomson LE, Germano G, Friedman JD, et al. Predicting therapeutic benefit from myocardial revascularization procedures: Are measurements of both resting left ventricular ejection fraction and stress-induced myocardial ischemia necessary? J Nucl Cardiol 2006;13:768-78. doi:10.1016/j.nuclcard.2006.08.017.

    Article  PubMed  Google Scholar 

  19. Hammermeister KE, DeRouen TA, Dodge HT. Variables predictive of survival in patients with coronary disease. Selection by univariate and multivariate analyses from the clinical, electrocardiographic, exercise, arteriographic, and quantitative angiographic evaluations. Circulation 1979;59:421. doi:10.1161/01.cir.59.3.421.

    Article  CAS  PubMed  Google Scholar 

  20. White HD, Norris RM, Brown MA, Brandt PW, Whitlock RM, Wild CJ. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 1987;76:44. doi:10.1161/01.cir.76.1.44.

    Article  CAS  PubMed  Google Scholar 

  21. Hamer AW, Takayama M, Abraham KA, Roche AH, Kerr AR, Williams BF, et al. End-systolic volume and long-term survival after coronary artery bypass graft surgery in patients with impaired left ventricular function. Circulation 1994;90:2899. doi:10.1161/01.cir.90.6.2899.

    Article  CAS  PubMed  Google Scholar 

  22. Gebhard C, Fiechter M, Stehli J, Klaeser B, Gaemperli O. Gender- and age-related differences in rest and post-stress left ventricular cardiac function determined by gated SPECT. Int J Cardiovasc Imaging 2014;30:1191. doi:10.1007/s10554-014-0431-y.

    Article  PubMed  Google Scholar 

  23. Véra P, Manrique A, Pontvianne V, Hitzel A, Koning R, Cribier A. Thallium-gated SPECT in patients with major myocardial infarction: Effect of filtering and zooming in comparison with equilibrium radionuclide imaging and left ventriculography. J Nucl Med 1999;40:513-21.

    PubMed  Google Scholar 

  24. Lyra M, Ploussi A. Filtering in SPECT image reconstruction. Int J Biomed Imaging 2011;2011:1. doi:10.1155/2011/693795.

    Article  Google Scholar 

  25. Standke D, Nowak B, Kaiser H-J, Koch K-C, Buell U. Quantification of left ventricular volumes and ejection fraction from gated 99mTc-MIBI SPECT: MRI validation and comparison of the Emory Cardiac Tool Box with QGS and 4D-MSPECT. J Nucl Med 2005;46(8):1256-63.

    PubMed  Google Scholar 

  26. DePuey EG, Bommireddipalli S, Clark J, Thompson L, Srour Y. Wide beam reconstruction “quarter-time” gated myocardial perfusion SPECT functional imaging: A comparison to “‘full-time’” ordered subset expectation maximum. J Nucl Cardiol 2009;16:736. doi:10.1007/s12350-009-9108-7.

    Article  PubMed  Google Scholar 

  27. Miao TL, Kansal V, Wells RG, Ali I, Ruddy TD, Chow BJW. Adopting new gamma cameras and reconstruction algorithms: Do we need to re-establish normal reference values? J Nucl Cardiol 2015. doi:10.1007/s12350-015-0172-x.

    PubMed  Google Scholar 

  28. Badano LP, Cucchini U, Muraru D, Al Nono O, Sarais C, Iliceto S. Use of three-dimensional speckle tracking to assess left ventricular myocardial mechanics: Inter-vendor consistency and reproducibility of strain measurements. Eur Heart J Cardiovasc Imaging 2012;14:285-93. doi:10.1093/ehjci/jes184.

    Article  PubMed  Google Scholar 

  29. Voigt J-U. Making a black box transparent. Eur Heart J Cardiovasc Imaging 2012;14:201-2. doi:10.1093/ehjci/jes213.

    Article  PubMed  Google Scholar 

  30. Shaw LJ, Wang TY, Mahmarian JJ, Douglas PS, Arrighi JA, Denton EA, et al. Registry. J Nucl Cardiol 2013;20:655-6. doi:10.1007/s12350-013-9743-x.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Tilkemeier MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dendy, J.M., Tilkemeier, P. Successful innovation: A time for change?. J. Nucl. Cardiol. 24, 134–137 (2017). https://doi.org/10.1007/s12350-016-0533-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-016-0533-0

Keywords

Navigation