Journal of Nuclear Cardiology

, Volume 24, Issue 1, pp 145–157 | Cite as

Phase analysis of gated blood pool SPECT for multiple stress testing assessments of ventricular mechanical dyssynchrony in a tachycardia-induced dilated cardiomyopathy canine model

  • Samaneh Salimian
  • Bernard Thibault
  • Vincent Finnerty
  • Jean Grégoire
  • François Harel
Original Article

Abstract

Background

Stress-induced dyssynchrony has been shown to be independently correlated with clinical outcomes in patients with dilated cardiomyopathy (DCM) and narrow QRS complexes. However, the extent to which stress levels affect inter- and intraventricular dyssynchrony parameters remains unknown.

Methods

Ten large dogs were submitted to tachycardia-induced DCM by pacing the right ventricular apex for 3–4 weeks to reach a target ejection fraction (EF) of 35% or less. Stress was then induced in DCM dogs by administering intravenous dobutamine up to a maximum of 20 μg·kg−1·min−1. Hemodynamic and ventricular dyssynchrony data were analyzed by left ventricular (LV) pressure measurements and gated blood pool SPECT (GBPS) imaging. In order to assess mechanical dyssynchrony in DCM subjects and compare it with that of 8 normal counterparts, we extracted the following data: count-based indices of LV contraction homogeneity index (CHI), entropy and phase standard deviation, and interventricular dyssynchrony index.

Results

A significant LV intraventricular dyssynchrony (CHI: 96.4 ± 1.3% in control vs 78.6% ± 10.9% in DCM subjects) resulted in an intense LV dysfunction in DCM subjects (EF: 49.5% ± 8.4% in control vs 22.6% ± 6.0% in DCM), compared to control subjects. However, interventricular dyssynchrony did not vary significantly between the two groups. Under stress, DCM subjects showed a significant improvement in ventricular functional parameters at each level (EF: 22.6% ± 6.0% at rest vs 48.1% ± 5.8% at maximum stress). All intraventricular dyssynchrony indices showed a significant increase in magnitude of synchrony from baseline to stress levels of greater than or equal to 5 μg·kg−1·min−1 dobutamine. There were individual differences in the magnitude and pattern of change in interventricular dyssynchrony during the various levels of stress.

Conclusions

Based on GBPS analyses, different levels of functional stress, even in close intervals, can have a significant impact on hemodynamic and intraventricular dyssynchrony parameters in a DCM model with narrow QRS complex.

Keywords

Ventricular dyssynchrony gated blood pool SPECT dobutamine stress dilated cardiomyopathy with narrow QRS 

Abbreviations

DCM

Dilated cardiomyopathy

GBPS

Gated blood pool SPECT

TAC

Time–activity curve

ROI

Region of interest

CHI

Contraction homogeneity index

SV

Stroke volume

Notes

Acknowledgments

This study was conducted with the collaboration of the Electrophysiology Service of the Montreal Heart Institute. We wish to thank Marc-Antoine Gillis, Evelyn Landry, Marie-Pierre Mathieu, and Sophie Marcil for their expert technical assistance.

Disclosure

The authors declare that they have no conflict of interest.

References

  1. 1.
    Kass DA. An epidemic of dyssynchrony: But what does it mean? J Am Coll Cardiol 2008;51:12-7.CrossRefPubMedGoogle Scholar
  2. 2.
    Matsumoto K, Tanaka H, Tatsumi K, Kaneko A, Tsuji T, Ryo K, et al. Regional heterogeneity of systolic dysfunction is associated with ventricular dyssynchrony in patients with idiopathic dilated cardiomyopathy and narrow QRS complex. Echocardiography 2012;29:1201-10.CrossRefPubMedGoogle Scholar
  3. 3.
    Ghio S, Constantin C, Klersy C, Serio A, Fontana A, Campana C, et al. Interventricular and intraventricular dyssynchrony are common in heart failure patients, regardless of QRS duration. Eur Heart J 2004;25:571-8.CrossRefPubMedGoogle Scholar
  4. 4.
    D’andrea A, Mele D, Nistri S, Riegler L, Galderisi M, Losi MA, et al. The prognostic impact of dynamic ventricular dyssynchrony in patients with idiopathic dilated cardiomyopathy and narrow QRS. Eur Heart J Cardiovasc Imaging 2013;14:183-9.CrossRefPubMedGoogle Scholar
  5. 5.
    Lafitte S, Bordachar P, Lafitte M, Garrigue S, Reuter S, Reant P, et al. Dynamic ventricular dyssynchrony: An exercise-echocardiography study. J Am Coll Cardiol 2006;47:2253-9.CrossRefPubMedGoogle Scholar
  6. 6.
    Chattopadhyay S, Alamgir MF, Nikitin NP, Fraser AG, Clark AL, Cleland JG. The effect of pharmacological stress on intraventricular dyssynchrony in left ventricular systolic dysfunction. Eur J Heart Fail 2008;10:412-20.CrossRefPubMedGoogle Scholar
  7. 7.
    Yagishita-Tagawa Y, Abe Y, Arai K, Yagishita D, Takagi A, Ashihara K, et al. Low-dose dobutamine induces left ventricular mechanical dyssynchrony in patients with dilated cardiomyopathy and a narrow QRS: A study using real-time three-dimensional echocardiography. J Cardiol 2013;61:275-80.CrossRefPubMedGoogle Scholar
  8. 8.
    Chung ES, Leon AR, Tavazzi L, Sun JP, Nihoyannopoulos P, Merlino J, et al. Results of the predictors of response to CRT (Prospect) trial. Circulation 2008;117:2608-16.CrossRefPubMedGoogle Scholar
  9. 9.
    Lancellotti P, Moonen M. Left ventricular dyssynchrony: A dynamic condition. Heart Fail Rev 2012;17:747-53.CrossRefPubMedGoogle Scholar
  10. 10.
    Trimble MA, Velazquez EJ, Adams GL, Honeycutt EF, Pagnanelli RA, Barnhart HX, et al. Repeatability and reproducibility of phase analysis of gated single-photon emission computed tomography myocardial perfusion imaging used to quantify cardiac dyssynchrony. Nucl Med Commun 2008;29:374.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lalonde M, Birnie D, Ruddy TD, Wassenaar RW. SPECT blood pool phase analysis can accurately and reproducibly quantify mechanical dyssynchrony. J Nucl Cardiol 2010;17:803-10.CrossRefPubMedGoogle Scholar
  12. 12.
    Kusunose K, Zhang Y, Mazgalev TN, Thomas JD, Popovic ZB. Left ventricular strain distribution in healthy dogs and in dogs with tachycardia-induced dilated cardiomyopathy. Cardiovasc Ultrasound 2013;11:43.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Harel F, Finnerty V, Gregoire J, Salimian S, Thibault B. Effects of dobutamine stress on cardiac contraction synchronism in a canine model. Physiol Meas 2013;34:1387-97.CrossRefPubMedGoogle Scholar
  14. 14.
    Ganz W, Donoso R, Marcus HS, Forrester JS, Swan HJ. A new technique for measurement of cardiac output by thermodilution in man. Am J Cardiol 1971;27:392-6.CrossRefPubMedGoogle Scholar
  15. 15.
    Harel F, Finnerty V, Ngo Q, Gregoire J, Khairy P, Thibault B. SPECT versus planar gated blood pool imaging for left ventricular evaluation. J Nucl Cardiol 2007;14:544-9.CrossRefPubMedGoogle Scholar
  16. 16.
    Harel F, Finnerty V, Grégoire J, Thibault B, Marcotte F, Ugolini P, et al. Gated blood-pool SPECT versus cardiac magnetic resonance imaging for the assessment of left ventricular volumes and ejection fraction. J Nucl Cardiol 2010;17:427-34.CrossRefPubMedGoogle Scholar
  17. 17.
    Harel F, Finnerty V, Grégoire J, Thibault B, Khairy P. Comparison of left ventricular contraction homogeneity index using SPECT gated blood pool imaging and planar phase analysis. J Nucl Cardiol 2008;15:80-5.CrossRefPubMedGoogle Scholar
  18. 18.
    O’Connell JW, Schreck C, Moles M, Badwar N, DeMarco T, Olgin J, et al. A unique method by which to quantitate synchrony with equilibrium radionuclide angiography. J Nucl Cardiol 2005;12:441-50.CrossRefPubMedGoogle Scholar
  19. 19.
    Wassenaar R, O’Connor D, Dej B, Ruddy TD, Birnie D. Optimization and validation of radionuclide angiography phase analysis parameters for quantification of mechanical dyssynchrony. J Nucl Cardiol 2009;16:895-903.CrossRefPubMedGoogle Scholar
  20. 20.
    Lalonde M, Birnie D, Ruddy TD, Beanlands RS, Wassenaar R, Wells RG. SPECT gated blood pool phase analysis of lateral wall motion for prediction of CRT response. Int J Cardiovasc Imaging 2014;30:559-69.CrossRefPubMedGoogle Scholar
  21. 21.
    Lalonde M, Wells RG, Birnie D, Ruddy TD, Wassenaar R. Development and optimization of SPECT gated blood pool cluster analysis for the prediction of CRT outcome. Med Phys 2014;41:072506.CrossRefPubMedGoogle Scholar
  22. 22.
    Hawkins NM, Petrie MC, MacDonald MR, Hogg KJ, McMurray JJ. Selecting patients for cardiac resynchronization therapy: Electrical or mechanical dyssynchrony? Eur Heart J 2006;27:1270-81.CrossRefPubMedGoogle Scholar
  23. 23.
    Somsen GA, Verberne HJ, Burri H, Ratib O, Righetti A. Ventricular mechanical dyssynchrony and resynchronization therapy in heart failure: A new indication for Fourier analysis of gated blood-pool radionuclide ventriculography. Nucl Med Commun 2006;27:105-12.CrossRefPubMedGoogle Scholar
  24. 24.
    Salimian S, Thibault B, Finnerty V, Grégoire J, Harel F. The effects of dobutamine stress on cardiac mechanical synchrony determined by phase analysis of gated SPECT myocardial perfusion imaging in a canine model. J Nucl Cardiol 2014;21:375-83.CrossRefPubMedGoogle Scholar
  25. 25.
    van Bommel RJ, Tanaka H, Delgado V, Bertini M, Borleffs CJW, Marsan NA, et al. Association of intraventricular mechanical dyssynchrony with response to cardiac resynchronization therapy in heart failure patients with a narrow QRS complex. Eur Heart J 2010;31:3054-62.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    AlJaroudi W, Alraies MC, DiFilippo F, Brunken RC, Cerqueira MD, Jaber WA. Effect of stress testing on left ventricular mechanical synchrony by phase analysis of gated positron emission tomography in patients with normal myocardial perfusion. Eur J Nucl Med Mol Imaging 2012;39:665-72.CrossRefPubMedGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2015

Authors and Affiliations

  • Samaneh Salimian
    • 1
  • Bernard Thibault
    • 2
  • Vincent Finnerty
    • 1
  • Jean Grégoire
    • 1
  • François Harel
    • 1
  1. 1.Department of Nuclear MedicineMontreal Heart Institute and University of MontrealMontrealCanada
  2. 2.Department of MedicineMontreal Heart Institute and University of MontrealMontrealCanada

Personalised recommendations