Skip to main content
Log in

Relationships between left ventricular asynchrony and myocardial blood flow

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Objective

82Rb PET protocols enable determination of left ventricular asynchrony (LVAS) at rest and stress, along with myocardial blood flow (MBF). We hypothesized that in patients with resting LVAS, MBF differs between those with stress-induced LVAS improvement and those with stress-induced LVAS deterioration.

Methods

We retrospectively analyzed 82Rb rest/regadenoson stress PET studies of 195 patients evaluated for known or suspected coronary artery disease. MBF was computed from first-pass data; function and relative perfusion were computed from myocardial equilibrium data. LVAS was defined as phase contraction bandwidth (BW) above 82Rb gender-specific normal limits, with changes defined as BW moving into or out of normal ranges.

Results

Among the 195 patients, 64 had LVAS at rest, of whom 13 reverted to normal and 51 continued to have LVAS with stress. Patients who did not improve had lower stress MBF (1.04 ± 0.69 vs 1.58 ± 0.67, p = .02) and coronary flow reserve (1.94 ± 1.16 vs 3.04 ± 1.22, p = .01) than those who did improve. ROC analysis indicated that the parameter most strongly associated with improvement in asynchrony for patients with resting LVAS was reduction in MBF heterogeneity (ROC area (accuracy) = 84%, sensitivity = 92%, and specificity = 67%).

Conclusion

LVAS is highly correlated with MBF and CVR, with stress-induced improvement in synchronicity most strongly associated with improved MBF homogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

CFR:

Coronary flow reserve

CRT:

Cardiac resynchronization therapy

CVR:

Coronary vascular resistance

EDV:

End-diastolic volume

EF:

Ejection fraction

ESV:

End-systolic volume

LV:

Left ventricle

LVAS:

Left ventricular asynchrony

MBF:

Myocardial blood flow

OSEM:

Ordered subset expectation maximization

References

  1. Hamad MA, van Straten AH, Schonberger JP, ter Woorst JF, de Wolf AM, Martens EJ, et al. Preoperative ejection fraction as a predictor of survival after coronary artery bypass grafting: Comparison with a matched general population. J Cardiothorac Surg 2010;5:29-36.

    Article  PubMed  Google Scholar 

  2. Auricchio A, Salo RW. Acute hemodynamic improvement by pacing in patients with severe congestive heart failure. Pacing Clin Electrophysiol 1997;20:313-24.

    Article  CAS  PubMed  Google Scholar 

  3. Wilkoff BL, Cook JR, Epstein AE, Greene HL, Hallstrom AP, Hsia H, et al. Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator: The Dual Chamber and VVI Implantable Defibrillator (DAVID) trial. JAMA 2002;288:3115-23.

    Article  PubMed  Google Scholar 

  4. Cleland JG, Daubert JC, Erdmann E, Freemantle N, Gras D, Kappenberger L, et al. For the Cardiac Resynchronization-Heart Failure (Care-HF) study investigators. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 2005;352:1539-49.

    Article  CAS  PubMed  Google Scholar 

  5. Abraham WT, Fisher WG, Smith AL, Delurgio DB, Leon AR, Loh E, et al. Cardiac resynchronization in chronic heart failure. N Engl J Med 2002;346:1845-53.

    Article  PubMed  Google Scholar 

  6. Uebleis C, Ulbrich M, Tegtmeyer R, Schuessler F, Haserueck N, Siebermair J, et al. Electrocardiogram-gated 18F-FDG PET/CT hybrid imaging in patients with unsatisfactory response to cardiac resynchronization therapy: Initial clinical results. J Nucl Med 2011;52:67-71.

    Article  PubMed  Google Scholar 

  7. Ruschitzka F, Abraham WT, Singh JP, Bax JJ, Borer JS, Brugada J, et al. Cardiac-resynchronization therapy in heart failure with a narrow QRS complex. N Engl J Med 2013;369:1395-405.

    Article  CAS  PubMed  Google Scholar 

  8. Chung ES, Leon AR, Tavazzi L, Sun JP, Nihoyannopoulos P, Merlino J, et al. Results of the predictors of response to CRT (PROSPECT) trial. Circulation 2008;117:2608-16.

    Article  PubMed  Google Scholar 

  9. Chen J, Garcia EV, Folks RD, Cooke CD, Faber TL, Tauxe EL, et al. Onset of left ventricular mechanical contraction as determined by phase analysis of ECG-gated myocardial perfusion SPECT imaging: Development of a diagnostic tool for assessment of cardiac mechanical dyssynchrony. J Nucl Cardiol 2005;12:687-95.

    Article  PubMed  Google Scholar 

  10. Henneman MM, Chen J, Dibbets-Schneider P, Stokkel MP, Bleeker GB, Ypenburg C, et al. Can LV dyssynchrony as assessed with phase analysis on gated myocardial perfusion SPECT predict response to CRT? J Nucl Med 2007;48:1104-11.

    Article  PubMed  Google Scholar 

  11. Soman P, Chen J. Left ventricular dyssynchrony assessment using myocardial single-photon emission CT. Semin Nucl Med 2014;44:314-9.

    Article  PubMed  Google Scholar 

  12. Bax JJ, Bleeker GB, Marwick TH, Molhoek SG, Boersma E, Steendijk P, et al. Left ventricular dyssynchrony predicts response and prognosis after cardiac resynchronization therapy. J Am Coll Cardiol 2004;44:1834-40.

    Article  PubMed  Google Scholar 

  13. Cooke CD, Esteves FP, Chen J, Garcia EV. Left ventricular mechanical synchrony from stress and rest 82Rb PET myocardial perfusion ECG-gated studies: Differentiating normal from LBBB patients. J Nucl Cardiol 2011;18:1076-85.

    Article  PubMed  PubMed Central  Google Scholar 

  14. AlJaroudi W, Alraies MC, Hachamovitch R, Jaber WA, Brunken R, Cerqueira MD, et al. Association of left ventricular mechanical dyssynchrony with survival benefit from revascularization: A study of gated positron emission tomography in patients with ischemic LV dysfunction and narrow QRS. Eur J Nucl Med Mol Imaging 2012;39:1581-91.

    Article  PubMed  Google Scholar 

  15. Jagathesan R, Barnes E, Rosen SD, Foale R, Camici PG. Dobutamine-induced hyperaemia inversely correlates with coronary artery stenosis severity and highlights dissociation between myocardial blood flow and oxygen consumption. Heart 2006;92:1230-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hauser M, Bengel F, Kuehn A, Nekolla S, Kaemmerer H, Schwaiger M, et al. Myocardial blood flow and coronary flow reserve in children with “normal” epicardial coronary arteries after the onset of Kawasaki disease assessed by positron emission tomography. Pediatr Cardiol 2004;25:108-12.

    Article  CAS  PubMed  Google Scholar 

  17. Bravo PE, Pozios I, Pinheiro A, Merrill J, Tsui BM, Wahl RL, et al. Comparison and effectiveness of regadenoson vs dipyridamole on stress electrocardiographic changes during positron emission tomography evaluation of patients with hypertrophic cardiomyopathy. Am J Cardiol 2012;110:1033-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gould KL. Clinical cardiac PET using generator-produced Rb-82: A review. Cardiovasc Intervent Radiol 1989;12:245-51.

    Article  CAS  PubMed  Google Scholar 

  19. Garcia EV, Faber TL, Cooke CD. The increasing role of quantitation in nuclear cardiology: The Emory approach. J Nucl Cardiol 2007;14:420-32.

    Article  PubMed  Google Scholar 

  20. El Fakhri G, Sitek A, Guerin B, Kijewski MF, Di Carli MF, Moore SC. Quantitative dynamic cardiac 82Rb PET using generalized factor and compartment analyses. J Nucl Med 2005;46:1264-71.

    PubMed  Google Scholar 

  21. Herrero P, Markham J, Shelton ME, Bergmann SR. Implementation and evaluation of a two-compartment model for quantification of myocardial perfusion with rubidium-82 and positron emission tomography. Circ Res 1992;70:496-507.

    Article  CAS  PubMed  Google Scholar 

  22. Yoshida K, Mullani N, Gould KL. Coronary flow and flow reserve by PET simplified for clinical applications using rubidium-82 or nitrogen-13-ammonia. J Nucl Med 1996;37:1701-12.

    CAS  PubMed  Google Scholar 

  23. Van Tosh A, Votaw JR, Reichek N, Palestro CJ, Nichols KJ. The relationship between ischemia-induced left ventricular dysfunction, coronary flow reserve and coronary steal on regadenoson stress gated 82Rb PET myocardial perfusion imaging. J Nucl Cardiol 2013;20:1060-8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Czernin J, Muller P, Chan S, Brunken RC, Porenta G, Krivokapich J, et al. Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation 1993;88:62-9.

    Article  CAS  PubMed  Google Scholar 

  25. Kaufmann PA, Gnecchi-Ruscone T, di Terlizzi M, Schafers KP, Luscher TF, Camici PG. Coronary heart disease in smokers: Vitamin C restores coronary microcirculatory function. Circulation 2000;102:1233-8.

    Article  CAS  PubMed  Google Scholar 

  26. Galt JR, Garcia EV, Robbins WL. Effects of myocardial wall thickness of SPECT quantification. IEEE Trans Med Imaging 1990;9:144-50.

    Article  CAS  PubMed  Google Scholar 

  27. Pazhenkottil AP, Buechel RR, Nkoulou R, Ghadri JR, Herzog BA, Husmann L, et al. Left ventricular dyssynchrony assessment by phase analysis from gated PET-FDG scans. J Nucl Cardiol 2011;18:920-5.

    Article  PubMed  Google Scholar 

  28. El Fakhri G, Kardan A, Sitek A, Dorbala S, Abi-Hatem N, Lahoud Y, et al. Reproducibility and accuracy of quantitative myocardial blood flow assessment with 82Rb PET: Comparison with 13N-ammonia PET. J Nucl Med 2009;50:1062-71.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Perry R, De Pasquale CG, Chew DP, Aylward PE, Joseph MX. QRS duration alone misses cardiac dyssynchrony in a substantial proportion of patients with chronic heart failure. J Am Soc Echocardiogr 2006;19:1257-63.

    Article  PubMed  Google Scholar 

  30. AlJaroudi W, Alraies MC, Menon V, Brunken RC, Cerqueira MD, Jaber WA. Predictors and incremental prognostic value of left ventricular mechanical dyssynchrony response during stress-gated positron emission tomography in patients with ischemic cardiomyopathy. J Nucl Cardiol 2012;19:958-69.

    Article  PubMed  Google Scholar 

  31. Schelbert HR. Anatomy and physiology of coronary blood flow. J Nucl Cardiol 2010;17:545-54.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lindner O, Sorensen J, Vogt J, Fricke E, Baller D, Horstkotte D, et al. Cardiac efficiency and oxygen consumption measured with 11C-acetate PET after long-term cardiac resynchronization therapy. J Nucl Med 2006;47:378-83.

    PubMed  Google Scholar 

  33. Nowak B, Sinha AM, Schaefer WM, Koch KC, Kaiser HJ, Hanrath P, et al. Cardiac resynchronization therapy homogenizes myocardial glucose metabolism and perfusion in dilated cardiomyopathy and left bundle branch block. J Am Coll Cardiol 2003;41:1523-8.

    Article  PubMed  Google Scholar 

  34. Ukkonen H, Beanlands RS, Burwash IG, de Kemp RA, Nahmias C, Fallen E, et al. Effect of cardiac resynchronization on myocardial efficiency and regional oxidative metabolism. Circulation 2003;107:28-31.

    Article  CAS  PubMed  Google Scholar 

  35. van Campen CM, Visser FC, van der Weerdt AP, Knaapen P, Comans EF, Lammertsma AA, et al. FDG PET as a predictor of response to resynchronization therapy in patients with ischaemic cardiomyopathy. Eur J Nucl Med Mol Imaging 2007;34:309-15.

    Article  PubMed  Google Scholar 

  36. Lehner S, Uebleis C, Schusler F, Haug A, Kaab S, Bartenstein P, et al. The amount of viable and dyssynchronous myocardium is associated with response to cardiac resynchronization therapy: initial clinical results using multiparametric ECG-gated [18F]FDG PET. Eur J Nucl Med Mol Imaging 2013;40:1876-83.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosures

Co-authors John R. Votaw, C. David Cooke, and Kenneth J. Nichols participate in royalties from Syntermed, Inc., in relation to some of the algorithms discussed in this manuscript. This work was supported in part by a Grant from NIH, R01HL085417-04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Van Tosh MD.

Additional information

See related editorial, doi:10.1007/s12350-015-0292-3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Tosh, A., Votaw, J.R., Cooke, C.D. et al. Relationships between left ventricular asynchrony and myocardial blood flow. J. Nucl. Cardiol. 24, 43–52 (2017). https://doi.org/10.1007/s12350-015-0270-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-015-0270-9

Keywords

Navigation