Skip to main content

Advertisement

Log in

Established and emerging dose reduction methods in cardiac computed tomography

  • Review Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Cardiac computed tomography (CT) is a non-invasive modality that is commonly used as an alternative to invasive coronary angiography for the investigation of coronary artery disease. The enthusiasm for this technology has been tempered by a growing appreciation of the potential risks of malignancy associated with the use of ionising radiation. In the spirit of minimizing patient risk, the medical profession and industry have worked hard to developed methods and protocols to reduce patient radiation exposure while maintaining excellent diagnostic accuracy. A complete understanding of radiation reduction techniques will allow clinicians to reduce patient risk while providing an important diagnostic service. This review will consider the established and emerging techniques that may be adopted to reduce patient absorbed doses from x-ray CT. By modifying (1) x-ray tube output, (2) imaging time (scan duration), (3) imaging distance (scan length) and (4) the appropriate use of shielding, clinicians will be able to adhere to the ‘as low as reasonably achievable (ALARA)’ principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Chow BJ, Abraham A, Wells GA, Chen L, Ruddy TD, Yam Y, et al. Diagnostic accuracy and impact of computed tomographic coronary angiography on utilization of invasive coronary angiography. Circ Cardiovasc Imaging 2009;2:16-23.

    Article  PubMed  Google Scholar 

  2. Hamon M, Biondi-Zoccai GG, Malagutti P, Agostoni P, Morello R, Valgimigli M, et al. Diagnostic performance of multislice spiral computed tomography of coronary arteries as compared with conventional invasive coronary angiography: A meta-analysis. J Am Coll Cardiol 2006;48:1896-910.

    Article  PubMed  Google Scholar 

  3. Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: Results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol 2008;52:1724-32.

    Article  PubMed  Google Scholar 

  4. Alkadhi H, Leschka S. Radiation dose of cardiac computed tomography—what has been achieved and what needs to be done. Eur Radiol 2011;21:505-9.

    Article  PubMed  Google Scholar 

  5. Scanlon PJ, Faxon DP, Audet AM, Carabello B, Dehmer GJ, Eagle KA, et al. ACC/AHA guidelines for coronary angiography: Executive summary and recommendations. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Coronary Angiography) developed in collaboration with the Society for Cardiac Angiography and Interventions. Circulation 1999;99:2345-57.

    PubMed  CAS  Google Scholar 

  6. Einstein AJ, Henzlova MJ, Rajagopalan S. Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA 2007;298:317-23.

    Article  PubMed  CAS  Google Scholar 

  7. Smith-Bindman R, Lipson J, Marcus R, Kim KP, Mahesh M, Gould R, et al. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med 2009;169:2078-86.

    Article  PubMed  Google Scholar 

  8. Mark DB, Berman DS, Budoff MJ, Carr JJ, Gerber TC, Hecht HS, et al. ACCF/ACR/AHA/NASCI/SAIP/SCAI/SCCT 2010 expert consensus document on coronary computed tomographic angiography: A report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol 2010;55:2663-99.

    Article  PubMed  Google Scholar 

  9. Gosling O, Loader R, Venables P, Rowles N, Morgan-Hughes G, Roobottom C. Cardiac CT: Are we underestimating the dose? A radiation dose study utilizing the 2007 ICRP tissue weighting factors and a cardiac specific scan volume. Clin Radiol 2010;65:1013-7.

    Article  PubMed  CAS  Google Scholar 

  10. Brateman L. Radiation safety considerations for diagnostic radiology personnel. Radiographics 1999;19:1037-55.

    PubMed  CAS  Google Scholar 

  11. Xu L, Zhang Z. Coronary CT angiography with low radiation dose. Int J Cardiovasc Imaging 2010;26:17-25.

    Article  PubMed  CAS  Google Scholar 

  12. Dauer LT, Brooks AL, Hoel DG, Morgan WF, Stram D, Tran P. Review and evaluation of updated research on the health effects associated with low-dose ionising radiation. Radiat Prot Dosim 2010;140:103-36.

    Article  CAS  Google Scholar 

  13. Einstein AJ, Moser KW, Thompson RC, Cerqueira MD, Henzlova MJ. Radiation dose to patients from cardiac diagnostic imaging. Circulation 2007;116:1290-305.

    Article  PubMed  Google Scholar 

  14. Kalra MK, Maher MM, Toth TL, Schmidt B, Westerman BL, Morgan HT, et al. Techniques and applications of automatic tube current modulation for CT. Radiology 2004;233:649-57.

    Article  PubMed  Google Scholar 

  15. Gerber TC, Kantor B, McCollough CH. Radiation dose and safety in cardiac computed tomography. Cardiol Clin 2009;27:665-77.

    Article  PubMed  Google Scholar 

  16. McCollough CH, Primak AN, Braun N, Kofler J, Yu L, Christner J. Strategies for reducing radiation dose in CT. Radiol Clin North Am 2009;47:27-40.

    Article  PubMed  Google Scholar 

  17. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP 2007;37:1-332.

    Google Scholar 

  18. 1990 Recommendations of the International Commission on Radiological Protection. Ann ICRP 1991;21:1-201.

  19. Mulkens TH, Bellinck P, Baeyaert M, Ghysen D, Van DX, Mussen E, et al. Use of an automatic exposure control mechanism for dose optimization in multi-detector row CT examinations: clinical evaluation. Radiology 2005;237:213-23.

    Article  PubMed  Google Scholar 

  20. Halliburton SS. Recent technologic advances in multi-detector row cardiac CT. Cardiol Clin 2009;27:655-64.

    Article  PubMed  Google Scholar 

  21. Alibek S, Brand M, Suess C, Wuest W, Uder M, Greess H. Dose reduction in pediatric computed tomography with automated exposure control. Acad Radiol 2011;18(6):690–3.

    Article  PubMed  Google Scholar 

  22. Hausleiter J, Meyer T, Hadamitzky M, Huber E, Zankl M, Martinoff S, et al. Radiation dose estimates from cardiac multislice computed tomography in daily practice: Impact of different scanning protocols on effective dose estimates. Circulation 2006;113:1305-10.

    Article  PubMed  Google Scholar 

  23. Hausleiter J, Martinoff S, Hadamitzky M, Martuscelli E, Pschierer I, Feuchtner GM, et al. Image quality and radiation exposure with a low tube voltage protocol for coronary CT angiography results of the PROTECTION II Trial. JACC Cardiovasc Imaging 2010;3:1113-23.

    Article  PubMed  Google Scholar 

  24. Park EA, Lee W, Kang JH, Yin YH, Chung JW, Park JH. The image quality and radiation dose of 100-kVp versus 120-kVp ECG-gated 16-slice CT coronary angiography. Korean J Radiol 2009;10:235-43.

    Article  PubMed  Google Scholar 

  25. Jakobs TF, Becker CR, Ohnesorge B, Flohr T, Suess C, Schoepf UJ, et al. Multislice helical CT of the heart with retrospective ECG gating: Reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol 2002;12:1081-6.

    Article  PubMed  Google Scholar 

  26. Takakuwa KM, Halpern EJ, Gingold EL, Levin DC, Shofer FS. Radiation dose in a “triple rule-out” coronary CT angiography protocol of emergency department patients using 64-MDCT: The impact of ECG-based tube current modulation on age, sex, and body mass index. AJR Am J Roentgenol 2009;192:866-72.

    Article  PubMed  Google Scholar 

  27. Pflederer T, Ho KT, Anger T, Krahner R, Ropers D, Muschiol G, et al. Assessment of regional left ventricular function by dual source computed tomography: Interobserver variability and validation to laevocardiography. Eur J Radiol 2009;72:85-91.

    Article  PubMed  CAS  Google Scholar 

  28. Sun Z, Ng KH. Multislice CT angiography in cardiac imaging. Part III: Radiation risk and dose reduction. Singapore Med J 2010;51:374-80.

    PubMed  CAS  Google Scholar 

  29. Shuman WP, Branch KR, May JM, Mitsumori LM, Lockhart DW, Dubinsky TJ, et al. Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries: Comparison of image quality and patient radiation dose. Radiology 2008;248:431-7.

    Article  PubMed  Google Scholar 

  30. Earls JP, Berman EL, Urban BA, Curry CA, Lane JL, Jennings RS, et al. Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique: Improved image quality and reduced radiation dose. Radiology 2008;246:742-53.

    Article  PubMed  Google Scholar 

  31. Gopal A, Mao SS, Karlsberg D, Young E, Waggoner J, Ahmadi N, et al. Radiation reduction with prospective ECG-triggering acquisition using 64-multidetector Computed Tomographic angiography. Int J Cardiovasc Imaging 2009;25:405-16.

    Article  PubMed  Google Scholar 

  32. Labounty TM, Leipsic J, Min JK, Heilbron B, Mancini GB, Lin FY, et al. Effect of padding duration on radiation dose and image interpretation in prospectively ECG-triggered coronary CT angiography. AJR Am J Roentgenol 2010;194:933-7.

    Article  PubMed  Google Scholar 

  33. Yerramasu A, Venuraju S, Atwal S, Goodman D, Lipkin D, Lahiri A. Radiation dose of CT coronary angiography in clinical practice: Objective evaluation of strategies for dose optimization. Eur J Radiol 2011.

  34. Khan A, Nasir K, Khosa F, Saghir A, Sarwar S, Clouse ME. Prospective gating with 320-MDCT angiography: Effect of volume scan length on radiation dose. AJR Am J Roentgenol 2011;196:407-11.

    Article  PubMed  Google Scholar 

  35. Zimmermann E, Dewey M. Whole-heart 320-row computed tomography: Reduction of radiation dose via prior coronary calcium scanning. Rofo 2011;183:54-9.

    PubMed  CAS  Google Scholar 

  36. Mahesh M, Cody DD. Physics of cardiac imaging with multiple-row detector CT. Radiographics 2007;27:1495-509.

    Article  PubMed  Google Scholar 

  37. Alkadhi H, Stolzmann P, Desbiolles L, Baumueller S, Goetti R, Plass A, et al. Low-dose, 128-slice, dual-source CT coronary angiography: Accuracy and radiation dose of the high-pitch and the step-and-shoot mode. Heart 2010;96:933-8.

    Article  PubMed  Google Scholar 

  38. McCollough CH, Primak AN, Saba O, Bruder H, Stierstorfer K, Raupach R, et al. Dose performance of a 64-channel dual-source CT scanner. Radiology 2007;243:775-84.

    Article  PubMed  Google Scholar 

  39. Abadi S, Mehrez H, Ursani A, Parker M, Paul N. Direct quantification of breast dose during coronary CT angiography and evaluation of dose reduction strategies. AJR Am J Roentgenol 2011;196:W152-8.

    Article  PubMed  Google Scholar 

  40. Yilmaz MH, Yasar D, Albayram S, Adaletli I, Ozer H, Ozbayrak M, et al. Coronary calcium scoring with MDCT: The radiation dose to the breast and the effectiveness of bismuth breast shield. Eur J Radiol 2007;61:139-43.

    Article  PubMed  Google Scholar 

  41. Leipsic J, Labounty TM, Heilbron B, Min JK, Mancini GB, Lin FY, et al. Estimated radiation dose reduction using adaptive statistical iterative reconstruction in coronary CT angiography: The ERASIR study. AJR Am J Roentgenol 2010;195:655-60.

    Article  PubMed  Google Scholar 

  42. Duarte R, Bettencourt N, Costa JC, Fernandez G. Coronary computed tomography angiography in a single cardiac cycle with a mean radiation dose of approximately 1 mSv: initial experience. Rev Port Cardiol 2010;29:1667-76.

    PubMed  Google Scholar 

  43. Bischoff B, Hein F, Meyer T, Hadamitzky M, Martinoff S, Schomig A, et al. Impact of a reduced tube voltage on CT angiography and radiation dose: Results of the PROTECTION I study. JACC Cardiovasc Imaging 2009;2:940-6.

    Article  PubMed  Google Scholar 

  44. Gerber TC, Carr JJ, Arai AE, Dixon RL, Ferrari VA, Gomes AS, et al. Ionizing radiation in cardiac imaging: A science advisory from the American Heart Association Committee on Cardiac Imaging of the Council on Clinical Cardiology and Committee on Cardiovascular Imaging and Intervention of the Council on Cardiovascular Radiology and Intervention. Circulation 2009;119:1056-65.

    Article  PubMed  Google Scholar 

  45. Senthamizhchelvan S, Bravo PE, Esaias C, Lodge MA, Merrill J, Hobbs RF, et al. Human biodistribution and radiation dosimetry of 82Rb. J Nucl Med 2010;51:1592-9.

    Article  PubMed  Google Scholar 

  46. Laskey WK, Feinendegen LE, Neumann RD, Dilsizian V. Low-level ionizing radiation from noninvasive cardiac imaging: Can we extrapolate estimated risks from epidemiologic data to the clinical setting? JACC Cardiovasc Imaging 2010;3:517-24.

    Article  PubMed  Google Scholar 

  47. Mettler FA Jr, Huda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: A catalog. Radiology 2008;248:254-63.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors have indicated that they have no financial conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin J. W. Chow MD, FRCPC, FACC, FASNC, FSCCT.

Additional information

Gary Small is supported by the University of Ottawa Cardiology Research Endowment Foundation. Benjamin Chow is supported by CIHR New Investigator Award #MSH-83718.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Small, G.R., Kazmi, M., deKemp, R.A. et al. Established and emerging dose reduction methods in cardiac computed tomography. J. Nucl. Cardiol. 18, 570–579 (2011). https://doi.org/10.1007/s12350-011-9400-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-011-9400-1

Keywords

Navigation