Properties of Traveling Wave Fronts for Three Species Lotka–Volterra System


The purpose of this paper is to investigate properties of traveling wave fronts for three species Lotka–Volterra system: the asymptotic behavior and uniqueness. Applying the Ikehara’s theorem, we determine the exponential rates of traveling wave fronts at the negative infinity. We further investigate the uniqueness of traveling wave fronts with the help of the sliding method.

This is a preview of subscription content, log in to check access.


  1. 1.

    Chen, X., Fu, S.C., Guo, J.S.: Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices. SIAM J. Math. Anal. 38, 233–258 (2006)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Chen, X.: Existence, uniqueness and asymptotic stability Of traveling waves in nonlocal evolution equations. Adv. Differ. Equ. 2, 125–160 (1997)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Carr, J., Chmaj, A.: Uniqueness of travelling waves for nonlocal monostable equations. Proc. Am. Math. Soc. 132, 2433–2439 (1998)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Conley, C., Gardner, R.: An application of the generalized Morse index to traveling wave solutions of a competitive reaction diffusion model. Indiana Univ. Math. J. 33, 319–345 (1984)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Ducrot, A., Nadin, G.: Asymptotic behaviour of travelling waves for the delayed fisher-KPP equation. J. Differ. Equ. 256, 3115–3140 (2014)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Ellison, W., Ellison, F.: Prime Numbers, A Wiley-Interscience Publication. Wiley, New York (1985)

    Google Scholar 

  7. 7.

    Fisher, R.A.: The Genetical Theory of Natural Selection: A Complete Variorum Edtion. Oxford University Press, Oxford (1999)

    Google Scholar 

  8. 8.

    Fisher, R.: The wave of advance of advantageous genes. Ann. Eugen. 7, 355–369 (1937)

    Article  Google Scholar 

  9. 9.

    Gardner, R.: Existence of traveling wave solutions of competing models, A degree theoretic approach. J. Differ. Equ. 44, 343–364 (1982)

    Article  Google Scholar 

  10. 10.

    Guo, J.S., Wu, C.H.: Traveling wave front for a two-component lattice dynamical system arising in competition models. J. Differ. Equ. 252, 4357–4391 (2012)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Hung, L.C.: Traveling wave solutions of competitive-cooperative Lotka–Volterra systems of three species. Nonlinear Anal. Real Word Appl. 12, 3691–3700 (2011)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Huang, J., Zou, X.: traveling wavefronts in diffusive and cooperative Lotka–Voltera system with delays. J. Math. Anal. Appl. 271, 455–466 (2002)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Hou, X., Leung, A.W.: Traveling wave solutions for a competitive reaction-diffusion sysrem and their asymptotics. Nonlinear Anal. Real Word Appl. 9, 2196–2213 (2008)

    Article  Google Scholar 

  14. 14.

    Hsu, C.H., Yang, T.S.: Existence, uniqueness, monotonicity and asymptotic behavior of traveling waves for a epidemic model, Nonlinearity, 26 (2013), 121-139. Corrigendum: 26 (2013), 2925–2928

  15. 15.

    Kan-on, Y.: Parameter dependence of propagation speed of travelling waves for competition-diffusion equations. SIAM J. Math. Anal. 26(2), 340–363 (1995)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Kan-on, Y.: Fisher wave fronts for the Lotka–Volterra competition model with diffusion. Nonlinear Anal. 28, 145–164 (1997)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Li, K., Huang, J.H., Li, X.: Asymptotic behavior and uniqueness of traveling wave fronts in a delayed nonlocal dispersal competitive system. Commu. Pure Appl. Anal. 16, 131–150 (2017)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Li, K., Li, X.: Asymptotic behavior and uniqueness of traveiling wave solutions in Ricker competiton system. J. Math. Anal. Appl. 389, 486–497 (2012)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Li, K., Li, X.: Traveling wave solutions in a delayed diffusive competition system. Nonlinear Anal. TMA. 75, 3705–3722 (2012)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Li, B., Weinberger, H., Lewis, M.: Spreading speeds as slowest wave speeds for cooperative systems. Math. Biosci. 196, 82–98 (2005)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Lv, G.Y., Wang, M.X.: Traveling wave front in diffusive and competitive Lotka–Volterra system with delays. Nonlinear Anal. Real Word Appl. 11, 1323–1329 (2010)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Li, W.T., Lin, G., Ruan, S.G.: Existence of travelling wave solutions in delayed reaction diffusion systems with applications to diffusion-competition systems. Nonlinearity 19, 1253–1273 (2006)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Ma, S.H., Wu, X., Yuan, R.: Nonlinear stability of traveling wavefronts for competitive-cooperative Lotka–Volterra systems of three species. Appl. Math. Comput. 351, 331–346 (2017)

    MathSciNet  MATH  Google Scholar 

  24. 24.

    Schaaf, K.: Asymptotic behavier and traveling wave solutions for parabolic functional-differential equations. Trans. Am. Math. Soc. 302, 587–615 (1987)

    MATH  Google Scholar 

  25. 25.

    Tang, M.M., Fife, P.C.: Propagating fronts for competing species equations with diffusion. Arch. Ration. Mech. Anal. 73, 69–77 (1980)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Volpert, A.I., Volpert, V.A., Volpert, V.A.: Traveling Wave Solutions of Parabolic Systems, Translations of Mathematical Monographs, vol. 140, American Mathematical Society, Providence, RI, (1994), Translated from the Russian manuscript by James F. Heyda

  27. 27.

    Widder, D.V.: The Laplace Tranform. Princeton University Press, Princeton (1941)

    Google Scholar 

  28. 28.

    Yu, Z.X., Mei, M.: Uniqueness and stability of traveling waves for cellular neural networks with multiple delays. J. Differ. Equ. 260, 241–267 (2016)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Yu, Z.X., Yuan, R.: Existence, asymptotics and uniqueness of traveling waves for nonlocal diffusion systems with delayed nonlocal response. Taiwanese J. Math. 17, 2163–2190 (2013)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Yu, Z.X., Yuan, R.: Traveling wave solutions in nonlocal reaction-diffusion systems with delays and applications. ANZIAM J. 51, 49–66 (2009)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Zhao, G., Ruan, S.: Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka–Volterra competition system with diffusion. J. Math. Pure. Appl. 96, 627–671 (2011)

    MathSciNet  Article  Google Scholar 

Download references


The research of Weiguo Zhang was partially supported by National Natural Science Foundation of China (No. 11471215), by Shanghai Leading Academic Discipline Project (No. XTKX2012) and by the Hujiang Foundation of China (B14005). Yanling Meng is supported by Natural Science Foundation of Shanghai (No.18ZR1426500). The authors would like to thank the anonymous referees for their valuable comments and suggestions which have led to an improvement of the presentation.

Author information



Corresponding author

Correspondence to Weiguo Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., Zhang, W. Properties of Traveling Wave Fronts for Three Species Lotka–Volterra System. Qual. Theory Dyn. Syst. 19, 67 (2020).

Download citation


  • Traveling wave fronts
  • Competitive-cooperative Lotka–Volterra system
  • Asymptotic behavior
  • Uniqueness
  • The sliding method

Mathematics Subject Classification

  • 35C07
  • 92D25
  • 35B35