Quantization of Non-standard Hamiltonians and the Riemann Zeros

  • Rami Ahmad El-Nabulsi


Relations between number theory, quantum mechanics and statistical mechanics are of interest to mathematicians and physicists since it was suggested that the zeros of the Riemann zeta function might be related to the spectrum of a self-adjoint quantum mechanical operator related to a one-dimensional Hamiltonian \( H = xp \) known as Berry–Keating–Connes Hamiltonian. However, this type of Hamiltonian is integrable and the classical trajectories of particles are not closed leading to a continuum spectrum. Recently, Sierra and Rodriguez-Laguna conjectured that the Hamiltonian \( H = x(p \,+\, {\xi \mathord{\left/ {\vphantom {\xi p}} \right. \kern-0pt} p}) \) where \( \xi \) is a coupling constant with dimensions of momentum square is characterized by a quantum spectrum which coincides with the average Riemann zeros and contains closed periodic orbits. In this paper, we show first that the Sierra–Rodriguez-Laguna Hamiltonian may be obtained by means of non-standard singular Lagrangians and besides the Hamiltonians \( H = x(p + {\xi \mathord{\left/ {\vphantom {\xi p}} \right. \kern-0pt} p}) \) and \( H(x,p) = px \) are not the only semiclassical Hamiltonians connected to the average Riemann zeros. We show the presence of a new Hamiltonian where its quantization revealed a number of interesting properties, in particular, the sign of a trace of the Riemann zeros.


Non-standard singular Lagrangians Quantization Riemann zeros 



The author thanks the anonymous referees for their useful comments and valuable suggestions.


  1. 1.
    Alonso, M.A.: Second order differential operators and their eigenfunctions, Talk given at Winter College on Fibre Optics, Fibre Lasers and Sensors, Abdus Salam Center for Theoretical Physics, 5–9 Feb, 2007Google Scholar
  2. 2.
    Aschheim, R., Castro, C., Irwin, K.: The search for a Hamiltonian whose energy spectrum coincides with the Riemann zeta zeroes. Int. J. Geom. Meth. Mod. Phys. 14(6), 1750109–1750137 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bender, C.M., Boettcher, S.: Real spectra in non-hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Berry, M.V., Keating, J.P.: The Riemann zeros and eigenvalue asymptotics. SIAM Rev. 41(2), 236–266 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Berry, M.V., Keating, J.P.: H = xp and the Riemann zeros. In: Keating, J.P., Khmelnitskii, D.E, Lerner, I.V. (eds.) Supersymmetry and Trace Formulae: Chaos and Disorders, pp. 355–367. Plenum, New York (1998)Google Scholar
  6. 6.
    Berry, M.V., Keating, J.P.: A compact Hamiltonian with the same asymptotic mean spectral density as the Riemann zeros. J. Phys. A Math. Theor. 44, 285203 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bhaduri, R.K., Khare, A., Law, J.: Phase of the Riemann zeta function and the inverted harmonic oscillator. Phys. Rev. E 52, 486 (1995)CrossRefGoogle Scholar
  8. 8.
    Carinena, J.F., Ranada, M.F., Santander, M.: Lagrangian formalism for nonlinear second-order Riccati Systems: one-dimensional integrability and two-dimensional superintegrability. J. Math. Phys. 46, 062703–062721 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Carinena, J.F., Nunez, J.F.: Geometric approach to dynamics obtained by deformation of Lagrangians. Nonlinear Dyn. 83(1), 457–461 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Carinena, J.F., Nunez, J.F.: Geometric approach to dynamics obtained by deformation of time-dependent Lagrangians. Nonlinear Dyn. 86(2), 1285–1291 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Carinera, J.F.: Theory of singular Lagrangians. Fortschr. Phys. 38(9), 641–679 (1990)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Cieslinski, J.L., Nikiciuk, T.: A direct approach to the construction of standard and non-standard Lagrangians for dissipative-like dynamical systems with variable coefficients. J. Phys. A Math. Gen. 43, 175205–1752222 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Cisneros-Parra, J.U.: On singular Lagrangians and Dirac’s method. Rev. Mex. Fis. 58, 61–68 (2012)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Connes, A.: Formule de trace en géométrie non-commutative et hypothèse de Riemann. C R Acad. Sci. Paris 323, 1231–1236 (1996)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Conrey, J.B.: More than two fifths of the zeros of the Riemann zeta function are on the critical line. J. Reine Angew. Math. 399, 1–26 (1989)MathSciNetzbMATHGoogle Scholar
  16. 16.
    EL-Nabulsi, R.A.: Non-linear dynamics with non-standard Lagrangians. Qual. Theory Dyn. Syst. 12(2), 273–291 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    El-Nabulsi, R.A.: Non-standard non-local-in-time Lagrangians in classical mechanics. Qual. Theory Dyn. Syst. 13(1), 149–160 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    El-Nabulsi, R.A.: Non-standard power-law Lagrangians in classical and quantum dynamics. Appl. Math. Lett. 43, 120–127 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Edwards, H.M.: Riemann’s Zeta Function. Academic Press, New York (1974)zbMATHGoogle Scholar
  20. 20.
    Faria, C.F.M., Fring, A.: Non-Hermitian Hamiltonians with real eigenvalues coupled to electric fields: from the time-independent to the time-dependent quantum mechanical formulation. Laser Phys. 17, 424–437 (2007)CrossRefGoogle Scholar
  21. 21.
    Figueira de Morisson Faria, C., Fring, A.: Time evolution of non-Hermitian Hamiltonian systems. J. Phys. A 39, 9269–9289 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Figotin, A., Schenker, J.H.: Hamiltonian treatment of time dispersive and dissipative media within the linear response theory. J. Comput. Appl. Math. 204, 199–208 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Figotin, A., Schenker, J.H.: Hamiltonian structure for dispersive and dissipative dynamical systems. J. Stat. Phys. 128(4), 969–1056 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Gupta, K.S., Harikumar, E., de Queiroz, A.R.: A Dirac type xp-Model and the Riemann Zeros. Eur. Phys. Lett. 102, 10006 (2013)CrossRefGoogle Scholar
  25. 25.
    Hardy, G.H., Littlewood, J.E.: The zeros of Riemann’s zeta-function on the critical line. Math. Zeitschrift 10, 283–317 (1921)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Hojman, S., Urrutia, L.F.: On the inverse problem of the calculus of variations. J. Math. Phys. 22, 1896–1903 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Knauf, A.: Number theory, dynamical systems and statistical mechanics. Rev. Math. Phys. 11(8), 1027–1060 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Kurokawa, N.: Multiple zeta functions: an example. In: Zeta Functions in Geometry (Tokyo, 1990). Advanced Studies in Pure Mathematics, vol. 21, pp 219–226. Kinokuniya, Tokyo (1992)Google Scholar
  29. 29.
    Lapidus, M.L.: In search of the Riemann zeros, Strings, fractal membranes and noncommutative spacetimes. American Mathematical Society, Providence (2008)CrossRefzbMATHGoogle Scholar
  30. 30.
    Liu, S., Guan, F., Wang, Y., Liu, C., Guo, Y.: The nonlinear dynamics based on the nonstandard Hamiltonians. Nonlinear Dyn. 88, 1229–1236 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Montgomery, H.: Analytic Number Theory, vol. 24, pp. 181–193. American Mathematical Society, Providence, RI (1973)CrossRefGoogle Scholar
  32. 32.
    Musielak, Z.E.: Standard and non-standard Lagrangians for dissipative dynamical systems with variable coefficients. J. Phys. A Math. Theor. 41, 055205–055222 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Musielak, Z.E.: General conditions for the existence of non-standard Lagrangians for dissipative dynamical systems. Chaos, Solitons Fractals 42(15), 2645–2652 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Nucci, M.C.: Spectral realization of the Riemann zeros by quantizing \( H = w(x)(p + {{l_{p}^{2} } \mathord{\left/ {\vphantom {{l_{p}^{2} } p}} \right. \kern-0pt} p}) \): the Lie-Noether symmetry approach. J. Phys. Conf. Ser. 482, 012032 (2014)Google Scholar
  35. 35.
    Rajeev, S.: A canonical formulation of dissipative mechanics using complex-valued Hamiltonians. Ann. Phys. 322(3), 1541–1555 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Riemann, B.: Uber die Anzahl der Primzahlen unter einer gegebenen Große, Monatsberichte der Berliner Akademie 1859, pp. 671–680. Berlin (1860)Google Scholar
  37. 37.
    de Rittis, R., Marmo, G., Platania, G., Scudellaro, P.: Inverse problem in classical mechanics: dissipative systems. Int. J. Theor. Phys. 22(10), 931–946 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Saha, A., Talukdar, B.: Inverse variational problem for non-standard Lagrangians. Rep. Math. Phys. 3(3), 299–309 (2014)CrossRefzbMATHGoogle Scholar
  39. 39.
    Sierra, G., Rodriguez-Laguna, J.: The H = xp model revisited and the Riemann zeros. Phys. Rev. Lett. 106, 200201–200204 (2011)CrossRefGoogle Scholar
  40. 40.
    Sierra, G.: The Riemann zeros as spectrum and the Riemann hypothesis, arXiv:1601.01797
  41. 41.
    Sierra, G.: A quantum mechanical model of the Riemann zeros. New J. Phys. 10, 033016 (2008)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Zhang, Y., Zhou, X.S.: Noether theorem and its inverse for nonlinear dynamical systems with nonstandard Lagrangians. Nonlinear Dyn. 84(2), 1867–1876 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mathematics and Physics DivisionsAthens Institute for Education and ResearchAthensGreece

Personalised recommendations