EMG Rectification Is Detrimental for Identifying Abnormalities in Corticomuscular and Intermuscular Coherence in Spinocerebellar Ataxia Type 2


Corticomuscular and intermuscular coherence (CMC, IMC) reflect connectivity between neuronal activity in the motor cortex measured by electroencephalography (EEG) and muscular activity measured by electromyography (EMG), or between activity in different muscles, respectively. There is an ongoing debate on the appropriateness of EMG rectification prior to coherence estimation. This work examines the effects of EMG rectification in CMC and IMC estimation in 20 spinocerebellar ataxia type 2 (SCA2) patients, 16 prodromal SCA2 gene mutation carriers, and 26 healthy controls during a repetitive upper or lower limb motor task. Coherence estimations were performed using the non-rectified raw EMG signal vs. the rectified EMG signal. EMG rectification decreases the level of significance of lower beta-frequency band CMC and IMC values in SCA2 patients and prodromal SCA2 mutation carriers vs. healthy controls, and also results in overall lower coherence values. EMG rectification is detrimental for beta-frequency band CMC and IMC estimation. One likely reason for this effect is distortion of coherence estimation in high-frequency signals, where the level of amplitude cancelation is high.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Giunti P, Sabbadini G, Sweeney MG, Davis MB, Veneziano L, Mantuano E, et al. The role of the SCA2 trinucleotide repeat expansion in 89 autosomal dominant cerebellar ataxia families. Frequency, clinical and genetic correlates. Brain. 1998;121(Pt 3):459–67.

    Article  Google Scholar 

  2. 2.

    Velazquez-Perez L, Rodriguez-Labrada R, Garcia-Rodriguez JC, Almaguer-Mederos LE, Cruz-Marino T, Laffita-Mesa JM. A comprehensive review of spinocerebellar ataxia type 2 in Cuba. Cerebellum. 2011;10:184–98.

    Article  Google Scholar 

  3. 3.

    Velazquez-Perez L, Seifried C, Abele M, Wirjatijasa F, Rodriguez-Labrada R, Santos-Falcon N, et al. Saccade velocity is reduced in presymptomatic spinocerebellar ataxia type 2. Clin Neurophysiol. 2009;120:632–5.

    CAS  Article  Google Scholar 

  4. 4.

    Rodriguez-Labrada R, Velazquez-Perez L, Seigfried C, Canales-Ochoa N, Auburger G, Medrano-Montero J, et al. Saccadic latency is prolonged in Spinocerebellar Ataxia type 2 and correlates with the frontal-executive dysfunctions. J Neurol Sci. 2011;306:103–7.

    Article  Google Scholar 

  5. 5.

    Rodriguez-Labrada R, Velazquez-Perez L, Ochoa NC, Polo LG, Valencia RH, Cruz GS, et al. Subtle rapid eye movement sleep abnormalities in presymptomatic spinocerebellar ataxia type 2 gene carriers. Mov Disord. 2011;26:347–50.

    Article  Google Scholar 

  6. 6.

    Velazquez-Perez L, Rodríguez-Labrada R, Torres-Vega R, Medrano Montero J, Vázquez-Mojena Y, Auburger G, et al. Abnormal corticospinal tract function and motor cortex excitability in non-ataxic SCA2 mutation carriers: a TMS study. Clin Neurophysiol. 2016;127:2713–9.

    Article  Google Scholar 

  7. 7.

    Linnemann C, Tezenas du Montcel S, Rakowicz M, Schmitz-Hubsch T, Szymanski S, Berciano J, et al. Peripheral neuropathy in spinocerebellar ataxia type 1, 2, 3, and 6. Cerebellum. 2016;15:165–73.

    CAS  Article  Google Scholar 

  8. 8.

    Velazquez-Perez L, Voss U, Rodriguez-Labrada R, Auburger G, Canales Ochoa N, Sanchez Cruz G, et al. Sleep disorders in spinocerebellar ataxia type 2 patients. Neurodegener Dis. 2011;8:447–54.

    Article  Google Scholar 

  9. 9.

    Velazquez-Perez L, Rodriguez-Labrada R, Cruz-Rivas EM, Fernandez-Ruiz J, Vaca-Palomares I, Lilia-Campins J, et al. Comprehensive study of early features in spinocerebellar ataxia 2: delineating the prodromal stage of the disease. Cerebellum. 2014;13:568–79.

    Article  Google Scholar 

  10. 10.

    Velazquez-Perez L, Tünnerhoff J, Rodriguez-Labrada R, Torres-Vega R, Ruiz-Gonzalez Y, Belardinelli P, et al. Early corticospinal tract damage in prodromal SCA2 revealed by EEG-EMG and EMG-EMG coherence. Clin Neurophysiol. 2017;128:2493–502.

    Article  Google Scholar 

  11. 11.

    Velazquez-Perez L, Rodriguez-Labrada R, Torres-Vega R, Montero JM, Vazquez-Mojena Y, Auburger G, et al. Central motor conduction time as prodromal biomarker in spinocerebellar ataxia type 2. Mov Disord. 2016;31:603–4.

    Article  Google Scholar 

  12. 12.

    Velazquez-Perez L, Rodriguez-Labrada R, Torres-Vega R, Ortega-Sanchez R, Medrano-Montero J, Gonzalez-Pina R, et al. Progression of corticospinal tract dysfunction in pre-ataxic spinocerebellar ataxia type 2: a two-years follow-up TMS study. Clin Neurophysiol. 2018;129:895–900.

    Article  Google Scholar 

  13. 13.

    Fisher KM, Zaaimi B, Williams TL, Baker SN, Baker MR. Beta-band intermuscular coherence: a novel biomarker of upper motor neuron dysfunction in motor neuron disease. Brain. 2012;135:2849–64.

    Article  Google Scholar 

  14. 14.

    Mima T, Toma K, Koshy B, Hallett M. Coherence between cortical and muscular activities after subcortical stroke. Stroke. 2001;32:2597–601.

    CAS  Article  Google Scholar 

  15. 15.

    Baker MR, Baker SN. The effect of diazepam on motor cortical oscillations and corticomuscular coherence studied in man. J Physiol. 2003;546:931–42.

    CAS  Article  Google Scholar 

  16. 16.

    Caviness JN, Shill HA, Sabbagh MN, Evidente VG, Hernandez JL, Adler CH. Corticomuscular coherence is increased in the small postural tremor of Parkinson’s disease. Mov Disord. 2006;21:492–9.

    Article  Google Scholar 

  17. 17.

    Jung KY, Cho JH, Ko D, Seok HY, Yoon HK, Lee HJ, et al. Increased corticomuscular coherence in idiopathic REM sleep behavior disorder. Front Neurol. 2012;3:60.

    Article  Google Scholar 

  18. 18.

    Velazquez-Perez L, Tünnerhoff J, Rodriguez-Labrada R, Torres-Vega R, Belardinelli P, Medrano-Montero J, et al. Corticomuscular coherence: a novel tool to assess the pyramidal tract dysfunction in spinocerebellar ataxia type 2. Cerebellum. 2017;16:602–6.

    CAS  Article  Google Scholar 

  19. 19.

    Farina D, Merletti R, Enoka RM. The extraction of neural strategies from the surface EMG. J Appl Physiol (1985). 2004;96:1486–95.

    Article  Google Scholar 

  20. 20.

    Farina D, Merletti R, Enoka RM. The extraction of neural strategies from the surface EMG: an update. J Appl Physiol (1985). 2014;117:1215–30.

    Article  Google Scholar 

  21. 21.

    Myers LJ, Lowery M, O’Malley M, Vaughan CL, Heneghan C, St Clair Gibson A, et al. Rectification and non-linear pre-processing of EMG signals for cortico-muscular analysis. J Neurosci Methods. 2003;124:157–65.

    CAS  Article  Google Scholar 

  22. 22.

    McClelland VM, Cvetkovic Z, Mills KR. Inconsistent effects of EMG rectification on coherence analysis. J Physiol. 2014;592:249–50.

    CAS  Article  Google Scholar 

  23. 23.

    Rosenberg JR, Amjad AM, Breeze P, Brillinger DR, Halliday DM. The Fourier approach to the identification of functional coupling between neuronal spike trains. Prog Biophys Mol Biol. 1989;53:1–31.

    CAS  Article  Google Scholar 

  24. 24.

    Negro F, Keenan K, Farina D. Power spectrum of the rectified EMG: when and why is rectification beneficial for identifying neural connectivity? J Neural Eng. 2015;12:036008.

    Article  Google Scholar 

  25. 25.

    Mima T, Hallett M. Electroencephalographic analysis of cortico-muscular coherence: reference effect, volume conduction and generator mechanism. Clin Neurophysiol. 1999;110:1892–9.

    CAS  Article  Google Scholar 

  26. 26.

    Farina D, Negro F, Jiang N. Identification of common synaptic inputs to motor neurons from the rectified electromyogram. J Physiol. 2013;591:2403–18.

    CAS  Article  Google Scholar 

  27. 27.

    Halliday DM, Farmer SF. On the need for rectification of surface EMG. J Neurophysiol. 2010;103:3547; author reply 8-9–3547; author reply 3549.

    Article  Google Scholar 

  28. 28.

    Yao B, Salenius S, Yue GH, Brown RW, Liu JZ. Effects of surface EMG rectification on power and coherence analyses: an EEG and MEG study. J Neurosci Methods. 2007;159:215–23.

    Article  Google Scholar 

  29. 29.

    Neto OP, Christou EA. Rectification of the EMG signal impairs the identification of oscillatory input to the muscle. J Neurophysiol. 2010;103:1093–103.

    Article  Google Scholar 

  30. 30.

    McClelland VM, Cvetkovic Z, Mills KR. Rectification of the EMG is an unnecessary and inappropriate step in the calculation of corticomuscular coherence. J Neurosci Methods. 2012;205:190–201.

    Article  Google Scholar 

  31. 31.

    Seeck M, Koessler L, Bast T, Leijten F, Michel C, Baumgartner C, et al. The standardized EEG electrode array of the IFCN. Clin Neurophysiol. 2017;128:2070–7.

    Article  Google Scholar 

  32. 32.

    Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. 2011;2011:156869.

    Article  Google Scholar 

  33. 33.

    Halliday DM, Rosenberg JR, Amjad AM, Breeze P, Conway BA, Farmer SF. A framework for the analysis of mixed time series/point process data-theory and application to the study of physiological tremor, single motor unit discharges and electromyograms. Prog Biophys Mol Biol. 1995;64:237–78.

    CAS  Article  Google Scholar 

  34. 34.

    Thomson DJ. Spectrum estimation and harmonic-analysis. Proc IEEE. 1982;70:1055–96.

    Article  Google Scholar 

  35. 35.

    Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes: the art of scientific computing. New York: Cambridge University Press; 2007.

    Google Scholar 

  36. 36.

    Maris E, Oostenveld R. Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods. 2007;164:177–90.

    Article  Google Scholar 

Download references


A preliminary version of this manuscript has been published in a book representing the collection of lectures of the Iberoamerican Congress on Pattern Recognition (CIARP 2019, 28–31 October 2019, Havana, Cuba): Ruiz-Gonzalez Y, Velázquez-Pérez L, Rodríguez-Labrada R, Torres-Vega R, Ziemann U (2019) Role of EMG Rectification for Corticomuscular and Intermuscular Coherence Estimation of Spinocerebellar Ataxia Type 2 (SCA2). In: Nyström I, Hernández Heredia Y, Milián Núñez V (eds.) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2019. Lecture Notes in Computer Science, vol 11896. Springer, Cham. We are grateful to the SCA2 patients, prodromal SCA2 mutation carriers, and the healthy controls for their participation.


This work was carried out while Prof. Luis Velázquez-Pérez was the recipient of a Georg Forster Research Award from the Alexander von Humboldt Foundation (3.4 – KUB/1149891), which funded this research project together with the Cuban Ministry of Public Health. LVP is the Editor-in-Chief of Anales de la Academia de Ciencias de Cuba, Associate Editor of Cerebellum and Ataxias, and Associate Editor of Investigation en Discapacidad. He received grants from the Cuban Ministry of Public Health, and the German Ministry of Education and Research. UZ is the Editor-in-Chief of Clinical Neurophysiology, Deputy Editor of Brain Stimulation, and editorial board member of The Journal of Neuroscience, Experimental Brain Research, Neurological Research and Practice, Nervenarzt. He received grants from the European Research Council, German Research Foundation, German Ministry of Education and Research, Biogen Idec GmbH, Servier, and Janssen Pharmaceuticals NV, and consulting fees from Biogen Idec GmbH, Bayer Vital GmbH, Bristol Myers Squibb GmbH, Pfizer, CorTec GmbH, Medtronic GmbH, all not related to this work.

Author information



Corresponding authors

Correspondence to Luis Velázquez-Pérez or Ulf Ziemann.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Gonzalez, Y., Velázquez-Pérez, L., Rodríguez-Labrada, R. et al. EMG Rectification Is Detrimental for Identifying Abnormalities in Corticomuscular and Intermuscular Coherence in Spinocerebellar Ataxia Type 2. Cerebellum (2020). https://doi.org/10.1007/s12311-020-01149-z

Download citation


  • Corticomuscular coherence
  • Intermuscular coherence
  • EEG
  • EMG
  • EMG rectification
  • Spinocerebellar ataxia type 2