The Cerebellum

, Volume 17, Issue 5, pp 628–653 | Cite as

Consensus Paper: Neurophysiological Assessments of Ataxias in Daily Practice

  • W. Ilg
  • M. Branscheidt
  • A. Butala
  • P. Celnik
  • L. de Paola
  • F. B. Horak
  • L. Schöls
  • H. A. G. Teive
  • A. P. Vogel
  • D. S. Zee
  • D. Timmann
Consensus paper


The purpose of this consensus paper is to review electrophysiological abnormalities and to provide a guideline of neurophysiological assessments in cerebellar ataxias. All authors agree that standard electrophysiological methods should be systematically applied in all cases of ataxia to reveal accompanying peripheral neuropathy, the involvement of the dorsal columns, pyramidal tracts and the brainstem. Electroencephalography should also be considered, although findings are frequently non-specific. Electrophysiology helps define the neuronal systems affected by the disease in an individual patient and to understand the phenotypes of the different types of ataxia on a more general level. As yet, there is no established electrophysiological measure which is sensitive and specific of cerebellar dysfunction in ataxias. The authors agree that cerebellar brain inhibition (CBI), which is based on a paired-pulse transcranial magnetic stimulation (TMS) paradigm assessing cerebellar-cortical connectivity, is likely a useful measure of cerebellar function. Although its role in the investigation and diagnoses of different types of ataxias is unclear, it will be of interest to study its utility in this type of conditions. The authors agree that detailed clinical examination reveals core features of ataxia (i.e., dysarthria, truncal, gait and limb ataxia, oculomotor dysfunction) and is sufficient for formulating a differential diagnosis. Clinical assessment of oculomotor function, especially saccades and the vestibulo-ocular reflex (VOR) which are most easily examined both at the bedside and with quantitative testing techniques, is of particular help for differential diagnosis in many cases. Pure clinical measures, however, are not sensitive enough to reveal minute fluctuations or early treatment response as most relevant for pre-clinical stages of disease which might be amenable to study in future intervention trials. The authors agree that quantitative measures of ataxia are desirable as biomarkers. Methods are discussed that allow quantification of ataxia in laboratory as well as in clinical and real-life settings, for instance at the patients’ home. Future studies are needed to demonstrate their usefulness as biomarkers in pharmaceutical or rehabilitation trials.


Ataxia Cerebellum Dysarthria Electroencephalography Epilepsy Evoked potentials Eye movements Gait Nerve conduction studies Neuropathy Posture Saccades Stance Transcranial magnetic stimulation Vestibulo-ocular reflex 


Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interests


  1. 1.
    Teive HA, Ashizawa T. Primary and secondary ataxias. Curr Opin Neurol. 2015 Aug;28(4):413–22.PubMedCrossRefGoogle Scholar
  2. 2.
    Beaudin M, Klein CJ, Rouleau GA, Dupre N. Systematic review of autosomal recessive ataxias and proposal for a classification. Cerebellum Ataxias. 2017;4:3.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Synofzik M, Schule R. Overcoming the divide between ataxias and spastic paraplegias: shared phenotypes, genes, and pathways. Mov Disord. 2017 Mar;32(3):332–45.PubMedCrossRefGoogle Scholar
  4. 4.
    Klockgether T. Sporadic ataxia with adult onset: classification and diagnostic criteria. Lancet Neurol. 2010 Jan;9(1):94–104.PubMedCrossRefGoogle Scholar
  5. 5.
    Koeppen AH, Mazurkiewicz JE. Friedreich ataxia: neuropathology revised. J Neuropathol Exp Neurol. 2013 Feb;72(2):78–90.PubMedCrossRefGoogle Scholar
  6. 6.
    van de Warrenburg BP, Schouten MI, de Bot ST, Vermeer S, Meijer R, Pennings M, et al. Clinical exome sequencing for cerebellar ataxia and spastic paraplegia uncovers novel gene-disease associations and unanticipated rare disorders. Eur J Human Genet : EJHG. 2016 Oct;24(10):1460–6.CrossRefGoogle Scholar
  7. 7.
    Valero-Cuevas FJ, Hoffmann H, Kurse MU, Kutch JJ, Theodorou EA. Computational models for neuromuscular function. IEEE Rev Biomed Eng. 2009;2:110–35.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Leigh RJ, Zee DS. The neurology of eye movements. USA: Oxford University Press; 2015.CrossRefGoogle Scholar
  9. 9.
    Anheim M, Tranchant C, Koenig M. The autosomal recessive cerebellar ataxias. N Engl J Med. 2012 Feb 16;366(7):636–46.PubMedCrossRefGoogle Scholar
  10. 10.
    Liang L, Chen T, Wu Y. The electrophysiology of spinocerebellar ataxias. Neurophysiol Clin. 2016 Feb;46(1):27–34.PubMedCrossRefGoogle Scholar
  11. 11.
    Schols L, Amoiridis G, Buttner T, Przuntek H, Epplen JT, Riess O. Autosomal dominant cerebellar ataxia: phenotypic differences in genetically defined subtypes? Ann Neurol. 1997 Dec;42(6):924–32.PubMedCrossRefGoogle Scholar
  12. 12.
    Schols L, Linnemann C, Globas C. Electrophysiology in spinocerebellar ataxias: spread of disease and characteristic findings. Cerebellum. 2008;7(2):198–203.PubMedCrossRefGoogle Scholar
  13. 13.
    van de Warrenburg BP, Notermans NC, Schelhaas HJ, van Alfen N, Sinke RJ, Knoers NV, et al. Peripheral nerve involvement in spinocerebellar ataxias. Arch Neurol. 2004 Feb;61(2):257–61.PubMedCrossRefGoogle Scholar
  14. 14.
    Anheim M, Monga B, Fleury M, Charles P, Barbot C, Salih M, et al. Ataxia with oculomotor apraxia type 2: clinical, biological and genotype/phenotype correlation study of a cohort of 90 patients. Brain. 2009 Oct;132(Pt 10):2688–98.PubMedCrossRefGoogle Scholar
  15. 15.
    Schöls L, Amoiridis G, Przuntek H, Frank G, Epplen JT, Epplen C. Friedreich's ataxia. Revision of the phenotype according to molecular genetics. Brain. 1997 Dec;120(Pt 12):2131–40.PubMedCrossRefGoogle Scholar
  16. 16.
    Synofzik M, Srulijes K, Godau J, Berg D, Schols L. Characterizing POLG ataxia: clinics, electrophysiology and imaging. Cerebellum. 2012 Dec;11(4):1002–11.PubMedCrossRefGoogle Scholar
  17. 17.
    El Euch-Fayache G, Bouhlal Y, Amouri R, Feki M, Hentati F. Molecular, clinical and peripheral neuropathy study of Tunisian patients with ataxia with vitamin E deficiency. Brain : J Neurol 2014 Feb;137(Pt 2):402-410.Google Scholar
  18. 18.
    Lelli S, Trevisan C, Ataxia-teleangectasia NP. neurophysiological studies in 8 patients. Electromyogr Clin Neurophysiol. 1995 Aug-Sep;35(5):311–5.PubMedGoogle Scholar
  19. 19.
    Le Ber I, Moreira MC, Rivaud-Pechoux S, Chamayou C, Ochsner F, Kuntzer T, et al. Cerebellar ataxia with oculomotor apraxia type 1: clinical and genetic studies. Brain : J Neurol. 2003 Dec;126(Pt 12):2761–72.CrossRefGoogle Scholar
  20. 20.
    Gazulla J, Benavente I, Vela AC, Marin MA, Pablo LE, Tessa A, et al. New findings in the ataxia of Charlevoix-Saguenay. J Neurol. 2012 May;259(5):869–78.PubMedCrossRefGoogle Scholar
  21. 21.
    Abele M, Burk K, Andres F, Topka H, Laccone F, Bosch S, et al. Autosomal dominant cerebellar ataxia type I. Nerve conduction and evoked potential studies in families with SCA1, SCA2 and SCA3. Brain. 1997 Dec;120(Pt 12):2141–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Linnemann C, Tezenas du Montcel S, Rakowicz M, Schmitz-Hubsch T, Szymanski S, Berciano J, et al. Peripheral neuropathy in spinocerebellar ataxia type 1, 2, 3, and 6. Cerebellum. 2016 Apr;15(2):165–73.PubMedCrossRefGoogle Scholar
  23. 23.
    Klockgether T, Schols L, Abele M, Burk K, Topka H, Andres F, et al. Age related axonal neuropathy in spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD). J Neurol Neurosurg Psychiatr. 1999 Feb;66(2):222–4.CrossRefGoogle Scholar
  24. 24.
    Schols L, Amoiridis G, Epplen JT, Langkafel M, Przuntek H, Riess O. Relations between genotype and phenotype in German patients with the Machado-Joseph disease mutation. J Neurol Neurosurg Psychiatr. 1996 Nov;61(5):466–70.CrossRefGoogle Scholar
  25. 25.
    Velazquez Perez L, Sanchez Cruz G, Canales Ochoa N, Rodriguez Labrada R, Rodriguez Diaz J, Almaguer Mederos L, et al. Electrophysiological features in patients and presymptomatic relatives with spinocerebellar ataxia type 2. J Neurol Sci. 2007 Dec 15;263(1-2):158–64.PubMedCrossRefGoogle Scholar
  26. 26.
    Schols L, Riess O, Schols S, Zeck S, Amoiridis G, Langkafel M, et al. Spinocerebellar ataxia type 1: clinical and neurophysiological characteristics in German kindreds. Acta Neurolo Scand. 1995 Dec;92(6):478–85.CrossRefGoogle Scholar
  27. 27.
    Velazquez-Perez L, Rodriguez-Labrada R, Canales-Ochoa N, Sanchez-Cruz G, Fernandez-Ruiz J, Montero JM, et al. Progression markers of Spinocerebellar ataxia 2. A twenty years neurophysiological follow up study. J Neurol Sci. 2010 Mar 15;290(1-2):22–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Schöls L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol. 2004 May;3(5):291–304.PubMedCrossRefGoogle Scholar
  29. 29.
    David G, Durr A, Stevanin G, Cancel G, Abbas N, Benomar A, et al. Molecular and clinical correlations in autosomal dominant cerebellar ataxia with progressive macular dystrophy (SCA7). Hum Mol Genet. 1998 Feb;7(2):165–70.PubMedCrossRefGoogle Scholar
  30. 30.
    Schwenkreis P, Tegenthoff M, Witscher K, Bornke C, Przuntek H, Malin JP, et al. Motor cortex activation by transcranial magnetic stimulation in ataxia patients depends on the genetic defect. Brain. 2002 Feb;125(Pt 2):301–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Zouari M, Feki M, Ben Hamida C, Larnaout A, Turki I, Belal S, et al. Electrophysiology and nerve biopsy: comparative study in Friedreich's ataxia and Friedreich's ataxia phenotype with vitamin E deficiency. Neuromuscul Disord. 1998 Aug;8(6):416–25.PubMedCrossRefGoogle Scholar
  32. 32.
    Scarpini C, Mondelli M, Guazzi GC, Federico A. Ataxia-telangiectasia: somatosensory, brainstem auditory and motor evoked potentials in six patients. Dev Med Child Neurol. 1996 Jan;38(1):65–73.PubMedCrossRefGoogle Scholar
  33. 33.
    Garcia A, Criscuolo C, de Michele G, Berciano J. Neurophysiological study in a Spanish family with recessive spastic ataxia of Charlevoix-Saguenay. Muscle Nerve. 2008 Jan;37(1):107–10.PubMedCrossRefGoogle Scholar
  34. 34.
    Tremblay S, Austin D, Hannah R, Rothwell JC. Non-invasive brain stimulation as a tool to study cerebellar-M1 interactions in humans. Cerebellum Ataxias. 2016;3:19.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Celnik P. Understanding and modulating motor learning with cerebellar stimulation. Cerebellum. 2015 Apr;14(2):171–4.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Carrillo F, Palomar FJ, Conde V, Diaz-Corrales FJ, Porcacchia P, Fernandez-Del-Olmo M, et al. Study of cerebello-thalamocortical pathway by transcranial magnetic stimulation in Parkinson's disease. Brain Stimul. 2013 Jul;6(4):582–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Koch G, Porcacchia P, Ponzo V, Carrillo F, Caceres-Redondo MT, Brusa L, et al. Effects of two weeks of cerebellar theta burst stimulation in cervical dystonia patients. Brain Stimul. 2014 Jul-Aug;7(4):564–72.PubMedCrossRefGoogle Scholar
  38. 38.
    Ragno M, Perretti AC, Castaldo I, Scarcella M, Acciarri S, Manganelli F, et al. Multimodal electrophysiologic follow-up study in 3 mutated but presymptomatic members of a spinocerebellar ataxia type 1 (SCA1) family. Neurol Sci. 2005 Jun;26(2):67–71.PubMedCrossRefGoogle Scholar
  39. 39.
    Farrar MA, Vucic S, Nicholson G, Kiernan MC. Motor cortical dysfunction develops in spinocerebellar ataxia type 3. Clin Neurophysiol. 2016 Nov;127(11):3418–24.PubMedCrossRefGoogle Scholar
  40. 40.
    Restivo DA, Giuffrida S, Rapisarda G, Antonuzzo A, Saponara R, Reggio A, et al. Central motor conduction to lower limb after transcranial magnetic stimulation in spinocerebellar ataxia type 2 (SCA2). Clin Neurophysiol. 2000 Apr;111(4):630–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Schols L, Amoiridis G, Langkafel M, Schols S, Przuntek H. Motor evoked potentials in the spinocerebellar ataxias type 1 and type 3. Muscle Nerve. 1997 Feb;20(2):226–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Yokota T, Sasaki H, Iwabuchi K, Shiojiri T, Yoshino A, Otagiri A, et al. Electrophysiological features of central motor conduction in spinocerebellar atrophy type 1, type 2, and Machado-Joseph disease. J Neurol Neurosurg Psychiatry. 1998 Oct;65(4):530–4.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Chen JT, Lin YY, Lee YC, Soong BW. Wu ZA, Liao KK. Prolonged central motor conduction time of lower limb muscle in spinocerebellar ataxia 6. J Clin Neurosci : Off J Neurosurg Soc Aust. 2004 May;11(4):381–3.CrossRefGoogle Scholar
  44. 44.
    Restivo DA, Lanza S, Saponara R, Rapisarda G, Giuffrida S, Palmeri A. Changes of cortical excitability of human motor cortex in spinocerebellar ataxia type 2. A study with paired transcranial magnetic stimulation. J Neurol Sci. 2002 Jun 15;198(1-2):87–92.PubMedCrossRefGoogle Scholar
  45. 45.
    Velazquez-Perez L, Rodriguez-Labrada R, Torres-Vega R, Medrano Montero J, Vazquez-Mojena Y, Auburger G, et al. Abnormal corticospinal tract function and motor cortex excitability in non-ataxic SCA2 mutation carriers: a TMS study. Clin Neurophysiol. 2016 Aug;127(8):2713–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Berardelli A, Abbruzzese G, Chen R, Orth M, Ridding MC, Stinear C, et al. Consensus paper on short-interval intracortical inhibition and other transcranial magnetic stimulation intracortical paradigms in movement disorders. Brain Stimul. 2008 Jul;1(3):183–91.PubMedCrossRefGoogle Scholar
  47. 47.
    Schelhaas HJ, van de Warrenburg BP, Bos MM, Houtman CJ, Scheffer H, Gabreels-Festen A, et al. Neurophysiologic studies in early-onset cerebellar ataxia. J Clin Neurophysiol : Off Publ Am Electroencephalogr Soc. 2006 Aug;23(4):381–7.CrossRefGoogle Scholar
  48. 48.
    Iwata NK, Ugawa Y. The effects of cerebellar stimulation on the motor cortical excitability in neurological disorders: a review. Cerebellum. 2005;4(4):218–23.PubMedCrossRefGoogle Scholar
  49. 49.
    Ugawa Y, Terao Y, Hanajima R, Sakai K, Furubayashi T, Machii K, et al. Magnetic stimulation over the cerebellum in patients with ataxia. Electroencephalogr Clin Neurophysiol. 1997 Sep;104(5):453–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Matsunaga K, Uozumi T, Hashimoto T, Tsuji S. Cerebellar stimulation in acute cerebellar ataxia. Clin Neurophysiol. 2001 Apr;112(4):619–22.PubMedCrossRefGoogle Scholar
  51. 51.
    Ugawa Y, Genba-Shimizu K, Rothwell JC, Iwata M, Kanazawa I. Suppression of motor cortical excitability by electrical stimulation over the cerebellum in ataxia. Ann Neurol. 1994 Jul;36(1):90–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Spampinato DA, Block HJ, Celnik PA. Cerebellar-M1 connectivity changes associated with motor learning are somatotopic specific. J Neurosci. 2017 Mar 1;37(9):2377–86.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Remillard G, Andermann F, Blitzer L, Andermann E. Electroencephalographic findings in Friedreich's ataxia. Can J Neurol Sci. 1976 Nov;3(4):309–12.PubMedCrossRefGoogle Scholar
  54. 54.
    Anheim M, Chaigne D, Fleury M, Santorelli FM, De Seze J, Durr A, et al. Autosomal recessive spastic ataxia of Charlevoix-Saguenay: study of a family and review of the literature. Rev Neurol. 2008 Apr;164(4):363–8.PubMedCrossRefGoogle Scholar
  55. 55.
    van Egmond ME, Verschuuren-Bemelmans CC, Nibbeling EA, Elting JW, Sival DA, Brouwer OF, et al. Ramsay Hunt syndrome: clinical characterization of progressive myoclonus ataxia caused by GOSR2 mutation. Mov Disord. 2014 Jan;29(1):139–43.PubMedCrossRefGoogle Scholar
  56. 56.
    Girard JM, Turnbull J, Ramachandran N, Minassian BA. Progressive myoclonus epilepsy. Handb Clin Neurol. 2013;113:1731–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Canafoglia L, Gilioli I, Invernizzi F, Sofia V, Fugnanesi V, Morbin M, et al. Electroclinical spectrum of the neuronal ceroid lipofuscinoses associated with CLN6 mutations. Neurology. 2015 Jul 28;85(4):316–24.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Jansen AC, Andermann E. Progressive Myoclonus Epilepsy, Lafora Type. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mefford HC, et al editors. GeneReviews((R)). Seattle (WA) 1993.Google Scholar
  59. 59.
    Gargouri-Berrechid A, Nasri A, Kacem I, Sidhom Y, Abdelkefi I, Hizem Y, et al. Long-term evolution of EEG in Unverricht-Lundborg disease. Neurophysiol Clin = Clin Neurophysiol. 2016 Apr;46(2):119–24.CrossRefGoogle Scholar
  60. 60.
    Ito Y, Gertsen E, Oguni H, Nakayama T, Matsuo M, Funatsuka M, et al. Clinical presentation, EEG studies, and novel mutations in two cases of GLUT1 deficiency syndrome in Japan. Brain Dev. 2005 Jun;27(4):311–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Hully M, Vuillaumier-Barrot S, Le Bizec C, Boddaert N, Kaminska A, Lascelles K, et al. From splitting GLUT1 deficiency syndromes to overlapping phenotypes. Eur J Med Genet. 2015 Sep;58(9):443–54.PubMedCrossRefGoogle Scholar
  62. 62.
    Rakowicz M, Zdzienicka E, Poniatowska R, Waliniowska E, Sulek A, Jakubowska T, et al. Spinocerebellar ataxias type 1 and 2: comparison of clinical, electrophysiological and magnetic resonance evaluation. Neurol Neurochir Pol. 2005 Jul-Aug;39(4):263–75.PubMedGoogle Scholar
  63. 63.
    Belluzzo M, Musho-Ilbeh S, Monti F, Pizzolato G. A case of nocturnal frontal lobe epilepsy in a patient with spinocerebellar ataxia type 17. Seizure. 2012 Dec;21(10):805–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Rasmussen A, Matsuura T, Ruano L, Yescas P, Ochoa A, Ashizawa T, et al. Clinical and genetic analysis of four Mexican families with spinocerebellar ataxia type 10. Ann Neurol. 2001 Aug;50(2):234–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Grewal RP, Achari M, Matsuura T, Durazo A, Tayag E, Zu L, et al. Clinical features and ATTCT repeat expansion in spinocerebellar ataxia type 10. Arch Neurol. 2002 Aug;59(8):1285–90.PubMedCrossRefGoogle Scholar
  66. 66.
    Teive HA, Roa BB, Raskin S, Fang P, Arruda WO, Neto YC, et al. Clinical phenotype of Brazilian families with spinocerebellar ataxia 10. Neurology. 2004 Oct 26;63(8):1509–12.PubMedCrossRefGoogle Scholar
  67. 67.
    Teive HA, Munhoz RP, Raskin S, Arruda WO, de Paola L, Werneck LC, et al. Spinocerebellar ataxia type 10: frequency of epilepsy in a large sample of Brazilian patients. Mov Disord. 2010 Dec 15;25(16):2875–8.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Licht DJ, Lynch DR. Juvenile dentatorubral-pallidoluysian atrophy: new clinical features. Pediatr Neurol. 2002 Jan;26(1):51–4.PubMedCrossRefGoogle Scholar
  69. 69.
    Choi KD, Choi JH. Episodic ataxias: clinical and genetic features. J Mov Disord. 2016 Sep;9(3):129–35.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Jen JC, Graves TD, Hess EJ, Hanna MG, Griggs RC, Baloh RW, et al. Primary episodic ataxias: diagnosis, pathogenesis and treatment. Brain. 2007 Oct;130(Pt 10):2484–93.PubMedCrossRefGoogle Scholar
  71. 71.
    Gardiner AR, Bhatia KP, Stamelou M, Dale RC, Kurian MA, Schneider SA, et al. PRRT2 gene mutations: from paroxysmal dyskinesia to episodic ataxia and hemiplegic migraine. Neurology. 2012 Nov 20;79(21):2115–21.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Van Bogaert P, Szliwowski HB. EEG findings in acetazolamide-responsive hereditary paroxysmal ataxia. Neurophysiol Clin = Clin Neurophysiol. 1996;26(5):335–40.CrossRefGoogle Scholar
  73. 73.
    Traff J, Holme E, Ekbom K, Nilsson BY. Ekbom's syndrome of photomyoclonus, cerebellar ataxia and cervical lipoma is associated with the tRNA(Lys) A8344G mutation in mitochondrial DNA. Acta Neurol Scand. 1995 Nov;92(5):394–7.PubMedCrossRefGoogle Scholar
  74. 74.
    Folker JE, Murdoch BE, Cahill LM, Delatycki MB, Corben LA, Vogel AP. Dysarthria in Friedreich’s ataxia: a perceptual analysis. Folia Phoniatr Logop. 2010;62(3):97–103.PubMedCrossRefGoogle Scholar
  75. 75.
    Brendel B, Ackermann H, Berg D, Lindig T, Schölderle T, Schöls L, et al. Friedreich Ataxia: Dysarthria Profile and Clinical Data. Cerebellum. 2013 2013/08/01;12(4):475–84.PubMedCrossRefGoogle Scholar
  76. 76.
    Rosen KM, Folker JE, Vogel AP, Corben LA, Murdoch BE, Delatycki MB. Longitudinal change in dysarthria associated with Friedreich ataxia: a potential clinical endpoint. J Neurol. 2012 2012/11/01;259(11):2471–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Schalling E, Hammarberg B, Hartelius L. A longitudinal study of dysarthria in spinocerebellar ataxia (SCA): aspects of articulation, prosody, and voice. J Med Speech Lang Pathol. 2008 2008/06//;16(2):103–14.Google Scholar
  78. 78.
    Yiu EM, Tai G, Peverill RE, Lee KJ, Croft KD, Mori TA, et al. An open-label trial in Friedreich ataxia suggests clinical benefit with high-dose resveratrol, without effect on frataxin levels. J Neurol. 2015 2015/04/07:1–10.Google Scholar
  79. 79.
    Schalling E, Hammarberg B, Hartelius L. Perceptual and acoustic analysis of speech in individuals with spinocerebellar ataxia (SCA). Logoped Phoniatr Vocol. 2007;32(1):31–46.PubMedCrossRefGoogle Scholar
  80. 80.
    Vogel AP, Wardrop MI, Folker JE, Synofzik M, Corben LA, Delatycki MB, et al. Voice in Friedreich Ataxia. J Voice 2016.Google Scholar
  81. 81.
    Poole ML, Wee JS, Folker JE, Corben LA, Delatycki MB, Vogel AP. Nasality in Friedreich ataxia. Clin Linguist Phon. 2015;29(1):46–58.PubMedCrossRefGoogle Scholar
  82. 82.
    Brendel B, Synofzik M, Ackermann H, Lindig T, Schölderle T, Schöls L, et al. Comparing speech characteristics in spinocerebellar ataxias type 3 and type 6 with Friedreich ataxia. J Neurol. 2015 2015/01/01;262(1):21–6.PubMedCrossRefGoogle Scholar
  83. 83.
    Sidtis JJ, Ahn JS, Gomez C, Sidtis D. Speech characteristics associated with three genotypes of ataxia. J Commun Disord. 2011;44(4):478–92.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Vogel AP, Rommel N, Oettinger A, Horger M, Krumm P, Kraus E-M, et al. Speech and swallowing abnormalities in adults with POLG associated ataxia (POLG-A). Mitochondrion. 2017;Google Scholar
  85. 85.
    Vogel AP, Maruff P. Monitoring change requires a rethink of assessment practices in voice and speech. Logoped Phoniatr Vocol. 2014;39(2):56–61.PubMedCrossRefGoogle Scholar
  86. 86.
    Vogel AP, Morgan AT. Assessment of impairment or monitoring change in Friedreich ataxia. Mov Disord. 2010 Aug 15;25(11):1753–4.PubMedCrossRefGoogle Scholar
  87. 87.
    Tsanas A, Zañartu M, Little MA, Fox C, Ramig LO, Clifford GD. Robust fundamental frequency estimation in sustained vowels: Detailed algorithmic comparisons and information fusion with adaptive Kalman filtering. J Acoust Soc Am. 2014;135(5):2885–901.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Rosen KM, Murdoch BE, Folker JE, Vogel AP, Cahill L, Delatycki MB, et al. Automatic method of pause measurement for normal and dysarthric speech. Clin Linguist Phon. 2010;24(2):141–54.PubMedCrossRefGoogle Scholar
  89. 89.
    Vogel AP, Fletcher J, Maruff P. The impact of task automaticity on speech in noise. Speech Comm. 2014;65:1–8.CrossRefGoogle Scholar
  90. 90.
    Vogel AP, Poole ML, Pemberton H, Caverle MW, Boonstra F, Low E, et al. Motor speech signature of behavioral variant frontotemporal dementia: refining the phenotype. Neurology. 2017;Google Scholar
  91. 91.
    Vogel AP, Shirbin C, Churchyard AJ, Stout JC. Speech acoustic markers of early stage and prodromal Huntington's disease: a marker of disease onset? Neuropsychologia. 2012;50(14):3273–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Vogel AP, Fletcher J, Snyder PJ, Fredrickson A, Maruff P. Reliability, stability, and sensitivity to change and impairment in acoustic measures of timing and frequency. J Voice. 2011;25(2):137–49.PubMedCrossRefGoogle Scholar
  93. 93.
    Vogel AP, Morgan AT. Factors affecting the quality of sound recording for speech and voice analysis. Int J Speech Lang Pathol. 2009;11(6):431–7.PubMedCrossRefGoogle Scholar
  94. 94.
    Enderby P, Palmer R. Frenchay Dysarthria Assessment—Second Edition. Pro-Ed: Austin, TX; 2008.Google Scholar
  95. 95.
    Schmitz-Hübsch T, Giunti P, Stephenson DA, Globas C, Baliko L, Saccà F, et al. SCA Functional Index: a useful compound performance measure for spinocerebellar ataxia. Neurology. 2008 August 12, 2008;71(7):486–92.PubMedCrossRefGoogle Scholar
  96. 96.
    Walshe M, Peach RK, Miller N. Dysarthria Impact Profile: development of a scale to measure psychosocial effects. Int J Lang Comm Disord. 2009;44(5):693–715.CrossRefGoogle Scholar
  97. 97.
    Diener HC, Dichgans J. Cerebellar and spinocerebellar gait disorders. In: Bronstein AM, Brandt T, Woollacott, editors. Clinical disorders of posture and gait. London. 1996. p. 147–55.Google Scholar
  98. 98.
    Morton SM, Bastian AJ. Cerebellar control of balance and locomotion. Neuroscientist. 2004 Jun;10(3):247–59.PubMedCrossRefGoogle Scholar
  99. 99.
    Ilg W, Timmann D. Gait ataxia-specific cerebellar influences and their rehabilitation. Mov Disord. 2013 Sep 15;28(11):1566–75.PubMedCrossRefGoogle Scholar
  100. 100.
    Fonteyn EM, Schmitz-Hubsch T, Verstappen CC, Baliko L, Bloem BR, Boesch S, et al. Prospective analysis of falls in dominant ataxias. Eur Neurol. 2012 Nov 7;69(1):53–7.PubMedCrossRefGoogle Scholar
  101. 101.
    Globas C, du Montcel ST, Baliko L, Boesch S, Depondt C, DiDonato S, et al. Early symptoms in spinocerebellar ataxia type 1, 2, 3, and 6. Mov Disord 2008 Nov 15;23(15):2232-2238.Google Scholar
  102. 102.
    Luo L, Wang J, Lo RY, Figueroa KP, Pulst SM, Kuo PH, et al. The initial symptom and motor progression in spinocerebellar ataxias. Cerebellum. 2016 Nov 15.Google Scholar
  103. 103.
    Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, et al. International cooperative ataxia rating scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci. 1997 Feb 12;145(2):205–11.PubMedCrossRefGoogle Scholar
  104. 104.
    Schmitz-Hübsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006 Jun 13;66(11):1717–20.PubMedCrossRefGoogle Scholar
  105. 105.
    Jacobi H, Hauser TK, Giunti P, Globas C, Bauer P, Schmitz-Hubsch T, et al. Spinocerebellar ataxia types 1, 2, 3 and 6: the clinical spectrum of ataxia and morphometric brainstem and cerebellar findings. Cerebellum. 2012 Mar;11(1):155–66.PubMedCrossRefGoogle Scholar
  106. 106.
    Morton SM, Tseng YW, Zackowski KM, Daline JR, Bastian AJ. Longitudinal tracking of gait and balance impairments in cerebellar disease. Mov Disord. 2010 Sep 15;25(12):1944–52.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Ilg W, Synofzik M, Brötz D, Burkard S, Giese MA, Schöls L. Intensive coordinative training improves motor performance in degenerative cerebellar disease. Neurology. 2009 Dec 1;73(22):1823–30.PubMedCrossRefGoogle Scholar
  108. 108.
    Ilg W, Schatton C, Schicks J, Giese MA, Schols L, Synofzik M. Video game-based coordinative training improves ataxia in children with degenerative ataxia. Neurology. 2012 Nov 13;79(20):2056–60.PubMedCrossRefGoogle Scholar
  109. 109.
    Powell LE, Myers AM. The activities-specific balance confidence (ABC) Scale. J Gerontol. 1995 Jan;50A(1):M28–34.CrossRefGoogle Scholar
  110. 110.
    Yack HJ, Berger RC. Dynamic stability in the elderly: identifying a possible measure. J Gerontol. 1993 Sep;48(5):M225–30.PubMedCrossRefGoogle Scholar
  111. 111.
    Horak FB, Wrisley DM, Frank J. The balance evaluation systems test (BESTest) to differentiate balance deficits. Phys Ther. 2009 May;89(5):484–98.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Ilg W, Golla H, Thier P, Giese MA. Specific influences of cerebellar dysfunctions on gait. Brain. 2007;130(3):786–98.PubMedCrossRefGoogle Scholar
  113. 113.
    Palliyath S, Hallett M, Thomas SL, Lebiedowska MK. Gait in patients with cerebellar ataxia. Mov Disord. 1998 Nov;13(6):958–64.PubMedCrossRefGoogle Scholar
  114. 114.
    Serrao M, Pierelli F, Ranavolo A, Draicchio F, Conte C, Don R, et al. Gait pattern in inherited cerebellar ataxias. Cerebellum. 2012 Mar;11(1):194–211.PubMedCrossRefGoogle Scholar
  115. 115.
    Morton SM, Bastian AJ. Relative contributions of balance and voluntary leg-coordination deficits to cerebellar gait ataxia. J Neurophysiol. 2003 Apr;89(4):1844–56.PubMedCrossRefGoogle Scholar
  116. 116.
    Stolze H, Klebe S, Petersen G, Raethjen J, Wenzelburger R, Witt K, et al. Typical features of cerebellar ataxic gait. J Neurol Neurosurg Psychiatry. 2002 Sep;73(3):310–2.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Wuehr M, Schniepp R, Ilmberger J, Brandt T, Jahn K. Speed-dependent temporospatial gait variability and long-range correlations in cerebellar ataxia. Gait Posture. 2013 Feb;37(2):214–8.PubMedCrossRefGoogle Scholar
  118. 118.
    Milne SC, Hocking DR, Georgiou-Karistianis N, Murphy A, Delatycki MB, Corben LA. Sensitivity of spatiotemporal gait parameters in measuring disease severity in Friedreich ataxia. Cerebellum. 2014 Dec;13(6):677–88.PubMedCrossRefGoogle Scholar
  119. 119.
    Martino G, Ivanenko YP, Serrao M, Ranavolo A, d'Avella A, Draicchio F, et al. Locomotor patterns in cerebellar ataxia. J Neurophysiol. 2014 Dec 1;112(11):2810–21.PubMedCrossRefGoogle Scholar
  120. 120.
    Milne SC, Corben LA, Yiu E, Delatycki MB, Gastrocnemius G-KN. soleus spasticity and muscle length in Friedreich's ataxia. J Clin Neurosci : Off J Neurosurg Soc Aust. 2016 Jul;29:29–34.CrossRefGoogle Scholar
  121. 121.
    Caliandro P, Iacovelli C, Conte C, Simbolotti C, Rossini PM, Padua L, et al. Trunk-lower limb coordination pattern during gait in patients with ataxia. Gait Posture. 2017 2017/09/01/;57:252–7.PubMedCrossRefGoogle Scholar
  122. 122.
    Serrao M, Chini G, Casali C, Conte C, Rinaldi M, Ranavolo A, et al. Progression of gait ataxia in patients with degenerative cerebellar disorders: a 4-year follow-up study. Cerebellum. 2016 Dec 06.Google Scholar
  123. 123.
    Jacobi H, Reetz K, du Montcel ST, Bauer P, Mariotti C, Nanetti L, et al. Biological and clinical characteristics of individuals at risk for spinocerebellar ataxia types 1, 2, 3, and 6 in the longitudinal RISCA study: analysis of baseline data. Lancet Neurol. 2013 Jul;12(7):650–8.PubMedCrossRefGoogle Scholar
  124. 124.
    Maas RP, van Gaalen J, Klockgether T, van de Warrenburg BP. The preclinical stage of spinocerebellar ataxias. Neurology. 2015 Jul 7;85(1):96–103.PubMedCrossRefGoogle Scholar
  125. 125.
    Storey E. Presymptomatic features of spinocerebellar ataxias. Lancet Neurol. 2015;12(7):625–6.CrossRefGoogle Scholar
  126. 126.
    Ilg W, Fleszar Z, Schatton C, Hengel H, Harmuth F, Bauer P, et al. Individual changes in preclinical spinocerebellar ataxia identified via increased motor complexity. Mov Disord. 2016 Dec;31(12):1891–900.PubMedCrossRefGoogle Scholar
  127. 127.
    Rochester L, Galna B, Lord S, Mhiripiri D, Eglon G, Chinnery PF. Gait impairment precedes clinical symptoms in spinocerebellar ataxia type 6. Mov Disord. 2014 Feb;29(2):252–5.PubMedCrossRefGoogle Scholar
  128. 128.
    Schniepp R, Wuehr M, Schlick C, Huth S, Pradhan C, Dieterich M, et al. Increased gait variability is associated with the history of falls in patients with cerebellar ataxia. J Neurol. 2014 Jan;261(1):213–23.PubMedCrossRefGoogle Scholar
  129. 129.
    Schmitz-Hubsch T, Brandt AU, Pfueller C, Zange L, Seidel A, Kuhn AA, et al. Accuracy and repeatability of two methods of gait analysis—GaitRite und Mobility Lab—in subjects with cerebellar ataxia. Gait Posture. 2016 May 25;48:194–201.PubMedCrossRefGoogle Scholar
  130. 130.
    Geerse DJ, Coolen BH, Roerdink M. Kinematic validation of a Multi-Kinect v2 instrumented 10-meter walkway for quantitative gait assessments. PLoS ONE. 2015;10(10):e0139913.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Muller B, Ilg W, Giese MA, Ludolph N. Validation of enhanced kinect sensor based motion capturing for gait assessment. PLoS ONE. 2017;12(4):e0175813.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Salarian A, Horak FB, Zampieri C, Carlson-Kuhta P, Nutt JG, Aminian K. iTUG, a sensitive and reliable measure of mobility. IEEE Trans Neural Syst Rehabil Eng. 2010;18(3):303–10.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Morton SM, Bastian AJ. Can rehabilitation help ataxia? Neurology. 2009 Dec 1;73(22):1818–9.PubMedCrossRefGoogle Scholar
  134. 134.
    Panturin E. Maximizing functional recovery. Phys Ther. 1997 Oct;77(10):1112–3.PubMedCrossRefGoogle Scholar
  135. 135.
    Ilg W, Brötz D, Burkard S, Giese MA, Schöls L, Synofzik M. Long-term effects of coordinative training in degenerative cerebellar disease. Mov Disord. 2010 Oct 15;25(13):2239–46.PubMedCrossRefGoogle Scholar
  136. 136.
    Keller JL, Bastian AJ. A home balance exercise program improves walking in people with cerebellar ataxia. Neurorehabil Neural Repair. 2014 Oct;28(8):770–8.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Miyai I, Ito M, Hattori N, Mihara M, Hatakenaka M, Yagura H, et al. Cerebellar ataxia rehabilitation trial in degenerative cerebellar diseases. Neurorehabil Neural Repair. 2012 Jun;26(5):515–22.PubMedCrossRefGoogle Scholar
  138. 138.
    Ilg W, Bastian AJ, Boesch S, Burciu RG, Celnik P, Claassen J, et al. Consensus paper: management of degenerative cerebellar disorders. Cerebellum. 2014 Apr;13(2):248–68.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Fonteyn EM, Heeren A, Engels JJ, Boer JJ, van de Warrenburg BP, Weerdesteyn V. Gait adaptability training improves obstacle avoidance and dynamic stability in patients with cerebellar degeneration. Gait Posture. 2014 May;40(1):247–51.PubMedCrossRefGoogle Scholar
  140. 140.
    Schniepp R, Schlick C, Pradhan C, Dieterich M, Brandt T, Jahn K, et al. The interrelationship between disease severity, dynamic stability, and falls in cerebellar ataxia. J Neurol. 2016 Jul;263(7):1409–17.PubMedCrossRefGoogle Scholar
  141. 141.
    Klenk J, Srulijes K, Schatton C, Schwickert L, Maetzler W, Becker C, et al. Ambulatory activity components deteriorate differently across neurodegenerative diseases: a cross-sectional sensor-based study. Neurodegener Dis. 2016;16(5-6):317–23.PubMedCrossRefGoogle Scholar
  142. 142.
    Mitoma H, Hayashi R, Yanagisawa N, Tsukagoshi H. Characteristics of parkinsonian and ataxic gaits: a study using surface electromyograms, angular displacements and floor reaction forces. J Neurol Sci 2000 Mar 1;174(1):22-39.Google Scholar
  143. 143.
    Ilg W, Christensen A, Mueller OM, Goericke SL, Giese MA, Timmann D. Effects of cerebellar lesions on working memory interacting with motor tasks of different complexities. J Neurophysiol. 2013 Nov;110(10):2337–49.PubMedCrossRefGoogle Scholar
  144. 144.
    Crowdy KA, Hollands MA, Ferguson IT, Marple-Horvat DE. Evidence for interactive locomotor and oculomotor deficits in cerebellar patients during visually guided stepping. Exp Brain Res. 2000 Dec;135(4):437–54.PubMedCrossRefGoogle Scholar
  145. 145.
    Crowdy KA, Kaur-Mann D, Cooper HL, Mansfield AG, Offord JL, Marple-Horvat DE. Rehearsal by eye movement improves visuomotor performance in cerebellar patients. Exp Brain Res. 2002 Sep;146(2):244–7.PubMedCrossRefGoogle Scholar
  146. 146.
    Timmann D, Horak FB. Perturbed step initiation in cerebellar subjects. 1. Modifications of postural responses. Exp Brain Res. 1998 Mar;119(1):73–84.PubMedCrossRefGoogle Scholar
  147. 147.
    Conte C, Serrao M, Casali C, Ranavolo A, Silvia M, Draicchio F, et al. Planned gait termination in cerebellar ataxias. Cerebellum. 2012 Dec;11(4):896–904.PubMedCrossRefGoogle Scholar
  148. 148.
    Mari S, Serrao M, Casali C, Conte C, Ranavolo A, Padua L, et al. Turning strategies in patients with cerebellar ataxia. Exp Brain Res. 2012 Oct;222(1-2):65–75.PubMedCrossRefGoogle Scholar
  149. 149.
    Earhart GM, Bastian AJ. Selection and coordination of human locomotor forms following cerebellar damage. J Neurophysiol. 2001 Feb;85(2):759–69.PubMedCrossRefGoogle Scholar
  150. 150.
    Morton SM, Dordevic GS, Bastian AJ. Cerebellar damage produces context-dependent deficits in control of leg dynamics during obstacle avoidance. Exp Brain Res. 2004 May;156(2):149–63.PubMedCrossRefGoogle Scholar
  151. 151.
    Earhart GM, Fletcher WA, Horak FB, Block EW, Weber KD, Suchowersky O, et al. Does the cerebellum play a role in podokinetic adaptation? Exp Brain Res. 2002 Oct;146(4):538–42.PubMedCrossRefGoogle Scholar
  152. 152.
    Morton SM, Bastian AJ. Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J Neurosci. 2006 Sep 6;26(36):9107–16.PubMedCrossRefGoogle Scholar
  153. 153.
    Ilg W, Giese MA, Gizewski ER, Schoch B, Timmann D. The influence of focal cerebellar lesions on the control and adaptation of gait. Brain. 2008 Nov;131(Pt 11):2913–27.PubMedCrossRefGoogle Scholar
  154. 154.
    Fonteyn EM, Schmitz-Hubsch T, Verstappen CC, Baliko L, Bloem BR, Boesch S, et al. Falls in spinocerebellar ataxias: results of the EuroSCA fall study. Cerebellum 2010 Feb 16.Google Scholar
  155. 155.
    Peterka RJ. Sensorimotor integration in human postural control. J Neurophysiol. 2002 Sep;88(3):1097–118.PubMedCrossRefGoogle Scholar
  156. 156.
    Macpherson JM, Horak F. Neural control of posture. In: Kandel ER, Schwartz J, Jessell TM, Siegelbaum SA, Hudspeth AJ, editors. Principles of Neural Science. 5th ed. New York: Elsevier; 2014. p. 811–22.Google Scholar
  157. 157.
    Horak FB, Nashner LM. Central programming of postural movements: adaptation to altered support-surface configurations. J Neurophysiol. 1986 Jun;55(6):1369–81.PubMedCrossRefGoogle Scholar
  158. 158.
    Matsushima A, Yoshida K, Genno H, Murata A, Matsuzawa S, Nakamura K, et al. Clinical assessment of standing and gait in ataxic patients using a triaxial accelerometer. Cerebellum Ataxias. 2015;2:9.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Diener HC, Dichgans J, Bacher M, Gompf B. Quantification of postural sway in normals and patients with cerebellar diseases. Electroencephalogr Clin Neurophysiol. 1984 Feb;57(2):134–42.PubMedCrossRefGoogle Scholar
  160. 160.
    Horak FB. Postural ataxia related to somatosensory loss. Adv Neurol. 2001;87:173–82.PubMedGoogle Scholar
  161. 161.
    Van de Warrenburg BP, Bakker M, Kremer BP, Bloem BR, Allum JH. Trunk sway in patients with spinocerebellar ataxia. Mov Disord. 2005 Aug;20(8):1006–13.PubMedCrossRefGoogle Scholar
  162. 162.
    Schoch B, Hogan A, Gizewski ER, Timmann D, Konczak J. Balance control in sitting and standing in children and young adults with benign cerebellar tumors. Cerebellum. 2010 Sep;9(3):324–35.PubMedCrossRefGoogle Scholar
  163. 163.
    Bunn LM, Marsden JF, Giunti P, Day BL. Stance instability in spinocerebellar ataxia type 6. Mov Disord. 2013 Apr;28(4):510–6.PubMedCrossRefGoogle Scholar
  164. 164.
    Jacobi H, Alfes J, Minnerop M, Konczak J, Klockgether T, Timmann D. Dual task effect on postural control in patients with degenerative cerebellar disorders. Cerebellum Ataxias. 2015;2:6.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Diener HC, Dichgans J, Guschlbauer B, Bacher M, Rapp H, Klockgether T. The coordination of posture and voluntary movement in patients with cerebellar dysfunction. Mov Disord. 1992;7(1):14–22.PubMedCrossRefGoogle Scholar
  166. 166.
    Timmann D, Horak FB. Perturbed step initiation in cerebellar subjects: 2. Modification of anticipatory postural adjustments. Exp Brain Res. 2001 Nov;141(1):110–20.PubMedCrossRefGoogle Scholar
  167. 167.
    Asaka T, Wang Y. Feedforward postural muscle modes and multi-mode coordination in mild cerebellar ataxia. Exp Brain Res. 2011 Apr;210(1):153–63.PubMedCrossRefGoogle Scholar
  168. 168.
    Bruttini C, Esposti R, Bolzoni F, Vanotti A, Mariotti C, Cavallari P. Temporal disruption of upper-limb anticipatory postural adjustments in cerebellar ataxic patients. Exp Brain Res. 2015 Jan;233(1):197–203.PubMedCrossRefGoogle Scholar
  169. 169.
    Diener HC, Dichgans J, Bacher M, Guschlbauer B. Characteristic alterations of long-loop "reflexes" in patients with Friedreich's disease and late atrophy of the cerebellar anterior lobe. J Neurol Neurosurg Psychiatr. 1984 Jul;47(7):679–85.CrossRefGoogle Scholar
  170. 170.
    Horak FB, Diener HC. Cerebellar control of postural scaling and central set in stance. J Neurophysiol. 1994 Aug;72(2):479–93.PubMedCrossRefGoogle Scholar
  171. 171.
    Mummel P, Timmann D, Krause UW, Boering D, Thilmann AF, Diener HC, et al. Postural responses to changing task conditions in patients with cerebellar lesions. J Neurol Neurosurg Psychiatr. 1998 Nov;65(5):734–42.CrossRefGoogle Scholar
  172. 172.
    Bakker M, Allum JH, Visser JE, Gruneberg C, van de Warrenburg BP, Kremer BH, et al. Postural responses to multidirectional stance perturbations in cerebellar ataxia. Exp Neurol. 2006 Nov;202(1):21–35.PubMedCrossRefGoogle Scholar
  173. 173.
    Timmann D, Prediction HFB. set-dependent scaling of early postural responses in cerebellar patients. Brain. 1997 Feb;120(Pt 2):327–37.PubMedCrossRefGoogle Scholar
  174. 174.
    Jacobs JV, Horak FB, Van Tran K, Nutt JG. An alternative clinical postural stability test for patients with Parkinson's disease. J Neurol. 2006 Nov;253(11):1404–13.PubMedCrossRefGoogle Scholar
  175. 175.
    Mancini M, Horak FB. Potential of APDM mobility lab for the monitoring of the progression of Parkinson's disease. Expert Rev Med Devices. 2016 May;13(5):455–62.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Mancini M, Salarian A, Carlson-Kuhta P, Zampieri C, King L, Chiari L, et al. ISway: a sensitive, valid and reliable measure of postural control. J Neuroeng Rehabil. 2012 Aug 22;9:59.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Smith BA, Carlson-Kuhta P, Horak FB. Consistency in administration and response for the backward push and release test: a clinical assessment of postural responses. Physiother Res Int. 2016 Mar;21(1):36–46.PubMedCrossRefGoogle Scholar
  178. 178.
    Konczak J, Schoch B, Dimitrova A, Gizewski E, Timmann D. Functional recovery of children and adolescents after cerebellar tumour resection. Brain. 2005 Jun;128(Pt 6):1428–41.PubMedCrossRefGoogle Scholar
  179. 179.
    Paquette C, Franzen E, Horak FB. More falls in cerebellar ataxia when standing on a slow up-moving tilt of the support surface. Cerebellum. 2016 Jun;15(3):336–42.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Pouget P. The cortex is in overall control of 'voluntary' eye movement. Eye (Lond). 2015 Feb;29(2):241–5.CrossRefGoogle Scholar
  181. 181.
    Rucker JC, Ying SH, Moore W, Optican LM, Buttner-Ennever J, Keller EL, et al. Do brainstem omnipause neurons terminate saccades? Ann N Y Acad Sci. 2011 Sep;1233:48–57.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Eggert T, Robinson FR, Straube A. Modeling inter-trial variability of saccade trajectories: effects of lesions of the oculomotor part of the fastigial nucleus. PLoS Comput Biol. 2016 Jun;12(6):e1004866.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Kunimatsu J, Suzuki TW, Tanaka M. Implications of lateral cerebellum in proactive control of saccades. J Neurosci. 2016 Jun 29;36(26):7066–74.PubMedCrossRefGoogle Scholar
  184. 184.
    Ramat S, Leigh RJ, Zee DS, Optican LM. What clinical disorders tell us about the neural control of saccadic eye movements. Brain. 2007 Jan;130(Pt 1):10–35.PubMedGoogle Scholar
  185. 185.
    Seifried C, Velazquez-Perez L, Santos-Falcon N, Abele M, Ziemann U, Almaguer LE, et al. Saccade velocity as a surrogate disease marker in spinocerebellar ataxia type 2. Ann Ny Acad Sci. 2005;1039(1):524–7.PubMedCrossRefGoogle Scholar
  186. 186.
    Salsano E, Umeh C, Rufa A, Pareyson D, Zee DS. Vertical supranuclear gaze palsy in Niemann-Pick type C disease. Neurol Sci. 2012 Dec;33(6):1225–32.PubMedCrossRefGoogle Scholar
  187. 187.
    Bhidayasiri R, Riley DE, Somers JT, Lerner AJ, Buttner-Ennever JA, Leigh RJ. Pathophysiology of slow vertical saccades in progressive supranuclear palsy. Neurology 2001 Dec 11;57(11):2070-2077.Google Scholar
  188. 188.
    Salman MS. Infantile-onset saccade initiation delay (congenital ocular motor apraxia). Curr Neurol Neurosci Rep. 2015 May;15(5):24.PubMedCrossRefGoogle Scholar
  189. 189.
    Antoniades C, Ettinger U, Gaymard B, Gilchrist I, Kristjansson A, Kennard C, et al. An internationally standardised antisaccade protocol. Vision Res. 2013 May 24;84:1–5.PubMedCrossRefGoogle Scholar
  190. 190.
    MacAskill MR, Anderson TJ. Eye movements in neurodegenerative diseases. Curr Opin Neurol. 2016 Feb;29(1):61–8.PubMedCrossRefGoogle Scholar
  191. 191.
    Gresty MA, Bronstein AM, Brandt T, Dieterich M. Neurology of otolith function. Peripheral and central disorders. Brain. 1992;115(3):647–73.PubMedCrossRefGoogle Scholar
  192. 192.
    Kheradmand A, Colpak AI, Zee DS. Chapter 8 - Eye movements in vestibular disorders. In: Joseph MF, Thomas L, editors. Handbook of Clinical Neurology. Volume 137: Elsevier; 2016. p. 103–17.Google Scholar
  193. 193.
    Zwergal A, Rettinger N, Frenzel C, Dieterich M, Brandt T, Strupp M. A bucket of static vestibular function. Neurology. 2009 May 12;72(19):1689–92.PubMedCrossRefGoogle Scholar
  194. 194.
    Otero-Millan J, Roberts DC, Lasker A, Zee DS, Kheradmand A. Knowing what the brain is seeing in three dimensions: a novel, noninvasive, sensitive, accurate, and low-noise technique for measuring ocular torsion. J Vis. 2015;15(14):11.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Schubert MC, Migliaccio AA, Ng TW, Shaikh AG, Zee DS. The under-compensatory roll aVOR does not affect dynamic visual acuity. J Assoc Res Otolaryngol : JARO. 2012 Aug;13(4):517–25.PubMedCrossRefGoogle Scholar
  196. 196.
    Colagiorgio P, Colnaghi S, Versino M, Ramat S. A new tool for investigating the functional testing of the VOR. Front Neurol. 2013;4:165.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Mantokoudis G, Saber Tehrani AS, Wozniak A, Eibenberger K, Kattah JC, Guede CI, et al. Impact of artifacts on VOR gain measures by video-oculography in the acute vestibular syndrome. J Vestib Res. 2016 Nov 03;26(4):375–85.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Chen L, Todd M, Halmagyi GM, Aw S. Head impulse gain and saccade analysis in pontine-cerebellar stroke and vestibular neuritis. Neurology. 2014 Oct 21;83(17):1513–22.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Mantokoudis G, Tehrani AS, Wozniak A, Eibenberger K, Kattah JC, Guede CI, et al. VOR gain by head impulse video-oculography differentiates acute vestibular neuritis from stroke. Otol Neurotol. 2015 Mar;36(3):457–65.PubMedCrossRefGoogle Scholar
  200. 200.
    Huh YE, Kim JS, Kim HJ, Park SH, Jeon BS, Kim JM, et al. Vestibular performance during high-acceleration stimuli correlates with clinical decline in SCA6. Cerebellum. 2015 Jun;14(3):284–91.PubMedCrossRefGoogle Scholar
  201. 201.
    Kattah JC, Dhanani SS, Pula JH, Mantokoudis G, Tehrani ASS, Toker DEN. Vestibular signs of thiamine deficiency during the early phase of suspected Wernicke encephalopathy. Neurology: Clin Pract. 2013;3(6):460–8.Google Scholar
  202. 202.
    Szmulewicz DJ, Roberts L, McLean CA, MacDougall HG, Halmagyi GM, Storey E. Proposed diagnostic criteria for cerebellar ataxia with neuropathy and vestibular areflexia syndrome (CANVAS). Neurol Clin Pract. 2016 Feb;6(1):61–8.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Newman-Toker DE, Saber Tehrani AS, Mantokoudis G, Pula JH, Guede CI, Kerber KA, et al. Quantitative video-oculography to help diagnose stroke in acute vertigo and dizziness: toward an ECG for the eyes. Stroke. 2013 Apr;44(4):1158–61.PubMedCrossRefGoogle Scholar
  204. 204.
    Choi JY, Jung I, Jung JM, Kwon DY, Park MH, Kim HJ, et al. Characteristics and mechanism of perverted head-shaking nystagmus in central lesions: video-oculography analysis. Clin Neurophysiol. 2016 Sep;127(9):2973–8.PubMedCrossRefGoogle Scholar
  205. 205.
    Lee SU, Choi JY, Kim HJ, Park JJ, Zee DS, Kim JS. Impaired tilt suppression of post-rotatory nystagmus and cross-coupled head-shaking nystagmus in cerebellar lesions: image mapping study. Cerebellum. 2016 Mar 11.Google Scholar
  206. 206.
    Choi JY, Kim JH, Kim HJ, Glasauer S, Kim JS. Central paroxysmal positional nystagmus: characteristics and possible mechanisms. Neurology. 2015 Jun 02;84(22):2238–46.PubMedCrossRefGoogle Scholar
  207. 207.
    Keage MJ, Delatycki MB, Gupta I, Corben LA, Vogel AP. Dysphagia in Friedreich Ataxia. Dysphagia. 2017 May 4.Google Scholar
  208. 208.
    Beh SC, Frohman TC, Frohman EM. Neuro-ophthalmic manifestations of cerebellar disease. Neurol Clin. 2014 Nov;32(4):1009–80.PubMedCrossRefGoogle Scholar
  209. 209.
    Beh SC, Frohman TC, Frohman EM. Cerebellar control of eye movements. J Neuroophthalmol : Off J North Am Neuroophthalmol Soc. 2017 Mar;37(1):87–98.CrossRefGoogle Scholar
  210. 210.
    Choi JY, Nystagmus KJS. central vestibular disorders. Curr Opin Neurol. 2017 Feb;30(1):98–106.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Cognitive Neurology and Hertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
  2. 2.Centre for Integrative Neuroscience (CIN), TübingenUniversity of TübingenTübingenGermany
  3. 3.The Human Brain Physiology and Stimulation Laboratory, Department of Physical Medicine and RehabilitationJohns Hopkins UniversityBaltimoreUSA
  4. 4.Department of NeurologyThe Johns Hopkins School of MedicineBaltimoreUSA
  5. 5.Epilepsy Service & EEG Lab, Neurology Service, Internal Medicine Department, Hospital de ClinicasFederal University of ParanaCuritibaBrazil
  6. 6.Department of NeurologyOregon Health and Science UniversityPortlandUSA
  7. 7.Department of Neurodegenerative Diseases and Hertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
  8. 8.German Centre for Neurodegenerative Diseases (DZNE)University of TübingenTübingenGermany
  9. 9.Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de ClinicasFederal University of ParanaCuritibaBrazil
  10. 10.Centre for Neuroscience of SpeechThe University of MelbourneMelbourneAustralia
  11. 11.Department of Neurology, Essen University HospitalUniversity of Duisburg-EssenEssenGermany

Personalised recommendations