Skip to main content

Advertisement

Log in

Long-Term Development of Embryonic Cerebellar Grafts in Two Strains of Lurcher Mice

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

For many degenerative cerebellar diseases, currently, no effective treatment that would substantially restore cerebellar functions is available. Neurotransplantation could be a promising therapy for such cases. Nevertheless, there are still severe limitations for routine clinical use. The aim of the work was to assess volume and morphology and functional impact on motor skills of an embryonic cerebellar graft injected in the form of cell suspension in Lurcher mutant and wild-type mice of the B6CBA and C3H strains after a 6-month survival period. The grafts survived in the majority of the mice. In both B6CBA and C3H Lurcher mice, most of the grafts were strictly delimited with no tendency to invade the host cerebellum, while in wild-type mice, graft-derived Purkinje cells colonized the host’s cerebellum. In C3H Lurcher mice, but not in B6CBA Lurchers, the grafts had smaller volume than in their wild-type counterparts. C3H wild-type mice had significantly larger grafts than B6CBA wild-type mice. No positive effect of the transplantation on performance in the rotarod test was observed. The findings suggest that the niche of the Lurcher mutant cerebellum has a negative impact on integration of grafted cells. This factor seems to be limiting for specific functional effects of the transplantation therapy in this mouse model of cerebellar degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Manto MU. The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum. 2005;4:2–6.

    Article  CAS  PubMed  Google Scholar 

  2. Mitoma H, Manto M. The physiological basis of therapies for cerebellar ataxias. Ther Adv Neurol Disord. 2016;9:396–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cendelin J. Experimental neurotransplantation treatment for hereditary cerebellar ataxias. Cerebellum Ataxias. 2016;3:7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cendelin J. Transplantation and stem cell therapy for cerebellar degenerations. Cerebellum. 2016;15:48–50.

    Article  CAS  PubMed  Google Scholar 

  5. Cendelin J, Mitoma H, Manto M. Neurotransplantation therapy and cerebellar reserve. CNS Neurol Disord Drug Targets. 2017; https://doi.org/10.2174/1871527316666170810114559.

    Article  CAS  Google Scholar 

  6. Rossi F, Cattaneo E. Opinion: neural stem cell therapy for neurological diseases: dreams and reality. Nat Rev Neurosci. 2002;3:401–9.

    Article  CAS  PubMed  Google Scholar 

  7. Li J, Imitola J, Snyder EY, Sidman RL. Neural stem cells rescue nervous Purkinje neurons by restoring molecular homeostasis of tissue plasminogen activator and downstream targets. J Neurosci. 2006;26:7839–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jones J, Jaramillo-Merchan J, Bueno C, Pastor D, Viso-Leon M, Martinez S. Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia. Neurobiol Dis. 2010;40:415–23.

    Article  PubMed  Google Scholar 

  9. Lee H, Lee JK, Min WK, Bae JH, He X, Schuchman EH, et al. Bone marrow-derived mesenchymal stem cells prevent the loss of Niemann-pick type C mouse Purkinje neurons by correcting sphingolipid metabolism and increasing sphingosine-1-phosphate. Stem Cells. 2010;28:821–31.

    Article  CAS  PubMed  Google Scholar 

  10. Mendonca LS, Nobrega C, Hirai H, Kaspar BK, Pereira de Almeida L. Transplantation of cerebellar neural stem cells improves motor coordination and neuropathology in Machado-Joseph disease mice. Brain. 2015;138:320–35.

    Article  PubMed  Google Scholar 

  11. Carletti B, Piemonte F, Rossi F. Neuroprotection: the emerging concept of restorative neural stem cell biology for the treatment of neurodegenerative diseases. Curr Neuropharmacol. 2011;9:313–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Phillips RJS. “Lurcher”, a new gene in linkage group XI of the house mouse. J Genet. 1960;57:35–42.

    Article  Google Scholar 

  13. Zuo J, De Jager PL, Takahashi KA, Jiang W, Linden DJ, Heintz N. Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature. 1997;388:769–73.

    Article  CAS  PubMed  Google Scholar 

  14. Araki K, Meguro H, Kushiya E, Takayama C, Inoue Y, Mishina M. Selective expression of the glutamate receptor channel delta 2 subunit in cerebellar Purkinje cells. Biochem Biophys Res Commun. 1993;197:1267–76.

    Article  CAS  PubMed  Google Scholar 

  15. Yuzaki M. The delta2 glutamate receptor: 10 years later. Neurosci Res. 2003;46:11–22.

    Article  CAS  PubMed  Google Scholar 

  16. Kashiwabuchi N, Ikeda K, Araki K, Hirano T, Shibuki K, Takayama C, et al. Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluR delta 2 mutant mice. Cell. 1995;81:245–52.

    Article  CAS  PubMed  Google Scholar 

  17. Kohda K, Kakegawa W, Matsuda S, Yamamoto T, Hirano H, Yuzaki M. The delta2 glutamate receptor gates long-term depression by coordinating interactions between two AMPA receptor phosphorylation sites. Proc Natl Acad Sci U S A. 2013;110:E948–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Caddy KW, Biscoe TJ. Structural and quantitative studies on the normal C3H and Lurcher mutant mouse. Philos Trans R Soc Lond Ser B Biol Sci. 1979;287:167–201.

    Article  CAS  Google Scholar 

  19. Sultan F, Konig T, Mock M, Thier P. Quantitative organization of neurotransmitters in the deep cerebellar nuclei of the Lurcher mutant. J Comp Neurol. 2002;452:311–23.

    Article  CAS  PubMed  Google Scholar 

  20. Zanjani SH, Selimi F, Vogel MW, Haeberle AM, Boeuf J, Mariani J, et al. Survival of interneurons and parallel fiber synapses in a cerebellar cortex deprived of Purkinje cells: studies in the double mutant mouse Grid2Lc/+;Bax(−/−). J Comp Neurol. 2006;497:622–35.

    Article  PubMed  Google Scholar 

  21. Cendelin J, Tuma J, Korelusova I, Vozeh F. The effect of genetic background on behavioral manifestation of Grid2(Lc) mutation. Behav Brain Res. 2014;271:218–27.

    Article  CAS  PubMed  Google Scholar 

  22. Coutelier M, Burglen L, Mundwiller E, Abada-Bendib M, Rodriguez D, Chantot-Bastaraud S, et al. GRID2 mutations span from congenital to mild adult-onset cerebellar ataxia. Neurology. 2015;84:1751–9.

    Article  CAS  PubMed  Google Scholar 

  23. Dumesnil-Bousez N, Sotelo C. Partial reconstruction of the adult Lurcher cerebellar circuitry by neural grafting. Neuroscience. 1993;55:1–21.

    Article  CAS  PubMed  Google Scholar 

  24. Heckroth JA, Hobart NJ, Summers D. Transplanted neurons alter the course of neurodegenerative disease in Lurcher mutant mice. Exp Neurol. 1998;154:336–52.

    Article  CAS  PubMed  Google Scholar 

  25. Cendelin J, Babuska V, Korelusova I, Houdek Z, Vozeh F. Long-term survival of solid embryonic cerebellar grafts in Lurcher mice. Neurosci Lett. 2012;515:23–7.

    Article  CAS  PubMed  Google Scholar 

  26. Babuska V, Houdek Z, Tuma J, Purkartova Z, Tumova J, Kralickova M, et al. Transplantation of embryonic cerebellar grafts improves gait parameters in ataxic Lurcher mice. Cerebellum. 2015;14:632–41.

    Article  CAS  PubMed  Google Scholar 

  27. Cedikova M, Houdek Z, Babuska V, Kulda V, Vozeh F, Zech N, et al. Fate of two types of cerebellar graft in wild type and cerebellar mutant mice. J Appl Biomed. 2014;12:17–23.

    Article  Google Scholar 

  28. Cendelin J, Korelusova I, Vozeh F. Comparison of embryonic cerebellar graft survival in adult Lurcher mutant mice of strains C3H and C57Bl/7. Prague Med Rep. 2006;107:89–94.

    CAS  PubMed  Google Scholar 

  29. Chang B, Hawes NL, Hurd RE, Davisson MT, Nusinowitz S, Heckenlively JR. Retinal degeneration mutants in the mouse. Vis Res. 2002;42:517–25.

    Article  CAS  PubMed  Google Scholar 

  30. Howard V, Reed M. Unbiased stereology: three-dimensional measurement in microscopy. New York: Garland Science; 2004.

    Google Scholar 

  31. Mouton P. Unbiased stereology: a concise guide. Baltimore: JHU Press; 2011.

    Google Scholar 

  32. Gundersen HJ, Jensen EB, Kieu K, Nielsen J. The efficiency of systematic sampling in stereology—reconsidered. J Microsc. 1999;193:199–211.

    Article  CAS  PubMed  Google Scholar 

  33. Ziegel J, Jensen EBV, Dorph-Petersen KA. Variance estimation for generalized Cavalieri estimators. Biometrika. 2011;98:187–98.

    Article  Google Scholar 

  34. Kolinko Y, Krakorova K, Cendelin J, Tonar Z, Kralickova M. Microcirculation of the brain: morphological assessment in degenerative diseases and restoration processes. Rev Neurosci. 2015;26:75–93.

    Article  PubMed  Google Scholar 

  35. Kolinko Y, Cendelin J, Kralickova M, Tonar Z. Smaller absolute quantities but greater relative densities of microvessels are associated with cerebellar degeneration in Lurcher mice. Front Neuroanat. 2016;10:35.

    Article  PubMed  PubMed Central  Google Scholar 

  36. R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna; 2017. http://www.R-project.org/

  37. Pekar S, Brabec M. Marginal models via GLS : a convenient yet neglected tool for the analysis of correlated data in the behavioural sciences. Ethology. 2016;122:621–31.

    Article  Google Scholar 

  38. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. nlme: linear and nonlinear mixed effects models. 2014. https://cran.r -project.org/web/packages/nlme/index.html.

  39. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300.

    Google Scholar 

  40. Sotelo C, Alvarado-Mallart RM. Reconstruction of the defective cerebellar circuitry in adult Purkinje cell degeneration mutant mice by Purkinje cell replacement through transplantation of solid embryonic implants. Neuroscience. 1987;20:1–22.

    Article  CAS  PubMed  Google Scholar 

  41. Kohsaka S, Takayama H, Ueda T, Toya S, Tsukada Y. Reorganization of cerebellar cell suspension transplanted into the weaver mutant cerebellum and immunohistochemical detection of synaptic formation. Neurosci Res. 1988;6:162–6.

    Article  CAS  PubMed  Google Scholar 

  42. Triarhou LC, Low WC, Ghetti B. Intraparenchymal grafting of cerebellar cell suspensions to the deep cerebellar nuclei of pcd mutant mice, with particular emphasis on re-establishment of a Purkinje cell cortico-nuclear projection. Anat Embryol (Berl). 1992;185:409–20.

    Article  CAS  Google Scholar 

  43. Kaemmerer WF, Low WC. Cerebellar allografts survive and transiently alleviate ataxia in a transgenic model of spinocerebellar ataxia type-1. Exp Neurol. 1999;158:301–11.

    Article  CAS  PubMed  Google Scholar 

  44. Purkartova Z, Tuma J, Pesta M, Kulda V, Hajkova L, Sebesta O, et al. Morphological analysis of embryonic cerebellar grafts in SCA2 mice. Neurosci Lett. 2014;558:154–8.

    Article  CAS  PubMed  Google Scholar 

  45. Sotelo C, Alvarado-Mallart RM. Embryonic and adult neurons interact to allow Purkinje cell replacement in mutant cerebellum. Nature. 1987;327:421–3.

    Article  CAS  PubMed  Google Scholar 

  46. Carletti B, Grimaldi P, Magrassi L, Rossi F. Specification of cerebellar progenitors after heterotopic-heterochronic transplantation to the embryonic CNS in vivo and in vitro. J Neurosci. 2002;22:7132–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Leto K, Bartolini A, Yanagawa Y, Obata K, Magrassi L, Schilling K, et al. Laminar fate and phenotype specification of cerebellar GABAergic interneurons. J Neurosci. 2009;29:7079–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Carletti B, Rossi F. Neurogenesis in the cerebellum. Neuroscientist. 2008;14:91–100.

    Article  PubMed  Google Scholar 

  49. Leto K, Carletti B, Williams IM, Magrassi L, Rossi F. Different types of cerebellar GABAergic interneurons originate from a common pool of multipotent progenitor cells. J Neurosci. 2006;26:11682–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Weimann JM, Johansson CB, Trejo A, Blau HM. Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat Cell Biol. 2003;5:959–66.

    Article  CAS  PubMed  Google Scholar 

  51. Duffin CA, McFarland R, Sarna JR, Vogel MW, Armstrong CL. Heat shock protein 25 expression and preferential Purkinje cell survival in the lurcher mutant mouse cerebellum. J Comp Neurol. 2010;518:1892–907.

    Article  CAS  PubMed  Google Scholar 

  52. Cendelin J, Korelusova I, Vozeh F. A preliminary study of solid embryonic cerebellar graft survival in adult B6CBA Lurcher mutant and wild type mice. Anat Rec (Hoboken). 2009;292:1986–92.

    Article  Google Scholar 

  53. Carletti B, Williams IM, Leto K, Nakajima K, Magrassi L, Rossi F. Time constraints and positional cues in the developing cerebellum regulate Purkinje cell placement in the cortical architecture. Dev Biol. 2008;317:147–60.

    Article  CAS  PubMed  Google Scholar 

  54. Carletti B, Rossi F. Selective rather than inductive mechanisms favour specific replacement of Purkinje cells by embryonic cerebellar cells transplanted to the cerebellum of adult Purkinje cell degeneration (pcd) mutant mice. Eur J Neurosci. 2005;22:1001–12.

    Article  PubMed  Google Scholar 

  55. Cvetanovic M, Hu YS, Opal P. Mutant ataxin-1 inhibits neural progenitor cell proliferation in SCA1. Cerebellum. 2017;16:340–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vernet-der Garabedian B, Lemaigre-Dubreuil Y, Delhaye-Bouchaud N, Mariani J. Abnormal IL-1beta cytokine expression in the cerebellum of the ataxic mutant mice staggerer and lurcher. Brain Res Mol Brain Res. 1998;62:224–7.

    Article  CAS  PubMed  Google Scholar 

  57. Vogel MW, Fan H, Sydnor J, Guidetti P. Cytochrome oxidase activity is increased in +/Lc Purkinje cells destined to die. Neuroreport. 2001;12:3039–43.

    Article  CAS  PubMed  Google Scholar 

  58. Garin N, Hornung JP, Escher G. Distribution of postsynaptic GABA(a) receptor aggregates in the deep cerebellar nuclei of normal and mutant mice. J Comp Neurol. 2002;447:210–7.

    Article  CAS  PubMed  Google Scholar 

  59. McFarland R, Blokhin A, Sydnor J, Mariani J, Vogel MW. Oxidative stress, nitric oxide, and the mechanisms of cell death in Lurcher Purkinje cells. Dev Neurobiol. 2007;67:1032–46.

    Article  CAS  PubMed  Google Scholar 

  60. Frederic F, Chautard T, Brochard R, Chianale C, Wollman E, Oliver C, et al. Enhanced endocrine response to novel environment stress and endotoxin in Lurcher mutant mice. Neuroendocrinology. 1997;66:341–7.

    Article  CAS  PubMed  Google Scholar 

  61. Kopmels B, Wollman EE, Guastavino JM, Delhaye-Bouchaud N, Fradelizi D, Mariani J. Interleukin-1 hyperproduction by in vitro activated peripheral macrophages from cerebellar mutant mice. J Neurochem. 1990;55:1980–5.

    Article  CAS  PubMed  Google Scholar 

  62. Bakalian A, Kopmels B, Messer A, Fradelizi D, Delhaye-Bouchaud N, Wollman E, et al. Peripheral macrophage abnormalities in mutant mice with spinocerebellar degeneration. Res Immunol. 1992;143:129–39.

    Article  CAS  PubMed  Google Scholar 

  63. Triarhou LC, Zhang W, Lee WH. Graft-induced restoration of function in hereditary cerebellar ataxia. Neuroreport. 1995;6:1827–32.

    Article  CAS  PubMed  Google Scholar 

  64. Triarhou LC, Zhang W, Lee WH. Amelioration of the behavioral phenotype in genetically ataxic mice through bilateral intracerebellar grafting of fetal Purkinje cells. Cell Transplant. 1996;5:269–77.

    Article  CAS  PubMed  Google Scholar 

  65. Fuca E, Guglielmotto M, Boda E, Rossi F, Leto K, Buffo A. Preventive motor training but not progenitor grafting ameliorates cerebellar ataxia and deregulated autophagy in tambaleante mice. Neurobiol Dis. 2017;102:49–59.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This publication was supported by the Charles University Grant Agency grant 716217, the National Sustainability Program I (NPU I) Nr. LO1503 provided by the Ministry of Education Youth and Sports of the Czech Republic, by the Charles University Research Fund (project number Q39) and student specific research project of the Charles University No. 260 394.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Cendelin.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cendelin, J., Purkartova, Z., Kubik, J. et al. Long-Term Development of Embryonic Cerebellar Grafts in Two Strains of Lurcher Mice. Cerebellum 17, 428–437 (2018). https://doi.org/10.1007/s12311-018-0928-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-018-0928-3

Keywords

Navigation