Skip to main content
Log in

The Molecular Pathway Regulating Bergmann Glia and Folia Generation in the Cerebellum

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Evolution of complex behaviors in higher vertebrates and primates require the development of sophisticated neuronal circuitry and the expansion of brain surface area to accommodate the vast number of neuronal and glial populations. To achieve these goals, the neocortex in primates and the cerebellum in amniotes have developed specialized types of basal progenitors to aid the folding of their cortices. In the cerebellum, Bergmann glia constitute such a basal progenitor population, having a distinctive morphology and playing a critical role in cerebellar corticogenesis. Here, we review recent studies on the induction of Bergmann glia and their crucial role in mediating folding of the cerebellar cortex. These studies uncover a key function of FGF-ERK-ETV signaling cascade in the transformation of Bergmann glia from radial glia in the ventricular zone. Remarkably, in the neocortex, the same signaling axis operates to facilitate the transformation of ventricular radial glia into basal radial glia, a Bergmann glia-like basal progenitor population, which have been implicated in the establishment of neocortical gyri. These new findings draw a striking similarity in the function and ontogeny of the two basal progenitor populations born in distinct brain compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cui W, Allen ND, Skynner M, Gusterson B, Clark AJ. Inducible ablation of astrocytes shows that these cells are required for neuronal survival in the adult brain. Glia. 2001;34(4):272–82. https://doi.org/10.1002/glia.1061.

    Article  CAS  PubMed  Google Scholar 

  2. Reeber SL, Arancillo M, Sillitoe RV. Bergmann glia are patterned into topographic molecular zones in the developing and adult mouse cerebellum. Cerebellum. 2014.

  3. Buffo A, Rossi F. Origin, lineage and function of cerebellar glia. Prog Neurobiol. 2013;109:42–63. https://doi.org/10.1016/j.pneurobio.2013.08.001.

    Article  PubMed  Google Scholar 

  4. Yuasa S. Bergmann glial development in the mouse cerebellum as revealed by tenascin expression. Anat Embryol (Berl). 1996;194(3):223–34.

    Article  CAS  Google Scholar 

  5. Yamada K, Watanabe M. Cytodifferentiation of Bergmann glia and its relationship with Purkinje cells. Anat Sci Int. 2002;77(2):94–108. https://doi.org/10.1046/j.0022-7722.2002.00021.x.

    Article  PubMed  Google Scholar 

  6. de Blas AL. Monoclonal antibodies to specific astroglial and neuronal antigens reveal the cytoarchitecture of the Bergmann glia fibers in the cerebellum. J Neurosci. 1984;4(1):265–73.

    PubMed  Google Scholar 

  7. Bellamy TC. Interactions between Purkinje neurones and Bergmann glia. Cerebellum. 2006;5(2):116–26. https://doi.org/10.1080/14734220600724569.

    Article  PubMed  Google Scholar 

  8. Iino M, Goto K, Kakegawa W, Okado H, Sudo M, Ishiuchi S, et al. Glia-synapse interaction through Ca2+-permeable AMPA receptors in Bergmann glia. Science. 2001;292(5518):926–9. https://doi.org/10.1126/science.1058827.

    Article  CAS  PubMed  Google Scholar 

  9. Parmigiani E, Leto K, Rolando C, Figueres-Onate M, Lopez-Mascaraque L, Buffo A, et al. Heterogeneity and bipotency of astroglial-like cerebellar progenitors along the interneuron and glial lineages. J Neurosci. 2015;35(19):7388–402. https://doi.org/10.1523/JNEUROSCI.5255-14.2015.

    Article  CAS  PubMed  Google Scholar 

  10. Shiga T, Ichikawa M, Hirata Y. Spatial and temporal pattern of postnatal proliferation of Bergmann glial cells in rat cerebellum: an autoradiographic study. Anat Embryol (Berl). 1983;167(2):203–11. https://doi.org/10.1007/BF00298511.

    Article  CAS  Google Scholar 

  11. Das GD, Lammert GL, McAllister JP. Contact guidance and migratory cells in the developing cerebellum. Brain Res. 1974;69(1):13–29. https://doi.org/10.1016/0006-8993(74)90366-7.

    Article  CAS  PubMed  Google Scholar 

  12. Alcock J, Lowe J, England T, Bath P, Sottile V. Expression of Sox1, Sox2 and Sox9 is maintained in adult human cerebellar cortex. Neurosci Lett. 2009;450(2):114–6. https://doi.org/10.1016/j.neulet.2008.11.047.

    Article  CAS  PubMed  Google Scholar 

  13. Koirala S, Corfas G. Identification of novel glial genes by single-cell transcriptional profiling of Bergmann glial cells from mouse cerebellum. PLoS One. 2010;5(2):e9198. https://doi.org/10.1371/journal.pone.0009198.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sottile V, Li M, Scotting PJ. Stem cell marker expression in the Bergmann glia population of the adult mouse brain. Brain Res. 2006;1099(1):8–17. https://doi.org/10.1016/j.brainres.2006.04.127.

    Article  CAS  PubMed  Google Scholar 

  15. Hampson DR, Blatt GJ. Autism spectrum disorders and neuropathology of the cerebellum. Front Neurosci. 2015;9:420. https://doi.org/10.3389/fnins.2015.00420.

    Article  PubMed  PubMed Central  Google Scholar 

  16. D'Mello AM, Stoodley CJ. Cerebro-cerebellar circuits in autism spectrum disorder. Front Neurosci. 2015;9:408. https://doi.org/10.3389/fnins.2015.00408.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mosconi MW, Wang Z, Schmitt LM, Tsai P, Sweeney JA. The role of cerebellar circuitry alterations in the pathophysiology of autism spectrum disorders. Front Neurosci. 2015;9:296. https://doi.org/10.3389/fnins.2015.00296.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Reeber SL, Otis TS, Sillitoe RV. New roles for the cerebellum in health and disease. Front Syst Neurosci. 2013;7:83. https://doi.org/10.3389/fnsys.2013.00083.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Marien P, van Dun K, Verhoeven J. Cerebellum and apraxia. Cerebellum. 2015;14(1):39–42. https://doi.org/10.1007/s12311-014-0620-1.

    Article  PubMed  Google Scholar 

  20. Hatten ME. Central nervous system neuronal migration. Annu Rev Neurosci. 1999;22(1):511–39. https://doi.org/10.1146/annurev.neuro.22.1.511.

    Article  CAS  PubMed  Google Scholar 

  21. Wang VY, Zoghbi HY. Genetic regulation of cerebellar development. Nat Rev Neurosci. 2001;2(7):484–91. https://doi.org/10.1038/35081558.

    Article  CAS  PubMed  Google Scholar 

  22. Leto K, Arancillo M, Becker EB, Buffo A, Chiang C, Ding B, et al. Consensus paper: cerebellar development. Cerebellum. 2016;15(6):789–828. https://doi.org/10.1007/s12311-015-0724-2.

    Article  PubMed  Google Scholar 

  23. Hall ZJ, Street SE, Healy SD. The evolution of cerebellum structure correlates with nest complexity. Biol Lett. 2013;9(6):20130687. https://doi.org/10.1098/rsbl.2013.0687.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Iwaniuk AN, Hurd PL, Wylie DR. Comparative morphology of the avian cerebellum: I. degree of foliation. Brain Behav Evol. 2006;68(1):45–62. https://doi.org/10.1159/000093530.

    Article  PubMed  Google Scholar 

  25. Lisney TJ, Yopak KE, Montgomery JC, Collin SP. Variation in brain organization and cerebellar foliation in chondrichthyans: batoids. Brain Behav Evol. 2008;72(4):262–82. https://doi.org/10.1159/000171489.

    Article  PubMed  Google Scholar 

  26. Yopak KE, Lisney TJ, Darlington RB, Collin SP, Montgomery JC, Finlay BL. A conserved pattern of brain scaling from sharks to primates. Proc Natl Acad Sci U S A. 2010;107(29):12946–51. https://doi.org/10.1073/pnas.1002195107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Eiraku M, Tohgo A, Ono K, Kaneko M, Fujishima K, Hirano T, et al. DNER acts as a neuron-specific notch ligand during Bergmann glial development. Nat Neurosci. 2005;8(7):873–80. https://doi.org/10.1038/nn1492.

    Article  CAS  PubMed  Google Scholar 

  28. Hiraoka Y, Komine O, Nagaoka M, Bai N, Hozumi K, Tanaka K. Delta-like 1 regulates Bergmann glial monolayer formation during cerebellar development. Mol Brain. 2013;6(1):25. https://doi.org/10.1186/1756-6606-6-25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Komine O, Nagaoka M, Watase K, Gutmann DH, Tanigaki K, Honjo T, et al. The monolayer formation of Bergmann glial cells is regulated by notch/RBP-J signaling. Dev Biol. 2007;311(1):238–50. https://doi.org/10.1016/j.ydbio.2007.08.042.

    Article  CAS  PubMed  Google Scholar 

  30. Kuang Y, Liu Q, Shu X, Zhang C, Huang N, Li J, et al. Dicer1 and MiR-9 are required for proper Notch1 signaling and the Bergmann glial phenotype in the developing mouse cerebellum. Glia. 2012;60(11):1734–46. https://doi.org/10.1002/glia.22392.

    Article  PubMed  Google Scholar 

  31. Weller M, Krautler N, Mantei N, Suter U, Taylor V. Jagged1 ablation results in cerebellar granule cell migration defects and depletion of Bergmann glia. Dev Neurosci. 2006;28(1-2):70–80. https://doi.org/10.1159/000090754.

    Article  CAS  PubMed  Google Scholar 

  32. Patten BA, Peyrin JM, Weinmaster G, Corfas G. Sequential signaling through Notch1 and erbB receptors mediates radial glia differentiation. J Neurosci. 2003;23(14):6132–40.

    CAS  PubMed  Google Scholar 

  33. Sathyamurthy A, Yin DM, Barik A, Shen C, Bean JC, Figueiredo D, et al. ERBB3-mediated regulation of Bergmann glia proliferation in cerebellar lamination. Development. 2015;142(3):522–32. https://doi.org/10.1242/dev.115931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rio C, Rieff HI, Qi P, Khurana TS, Corfas G. Neuregulin and erbB receptors play a critical role in neuronal migration. Neuron. 1997;19(1):39–50. https://doi.org/10.1016/S0896-6273(00)80346-3.

    Article  CAS  PubMed  Google Scholar 

  35. Fauquier T, Chatonnet F, Picou F, Richard S, Fossat N, Aguilera N, et al. Purkinje cells and Bergmann glia are primary targets of the TRalpha1 thyroid hormone receptor during mouse cerebellum postnatal development. Development. 2014;141(1):166–75. https://doi.org/10.1242/dev.103226.

    Article  CAS  PubMed  Google Scholar 

  36. Belvindrah R, Nalbant P, Ding S, Wu C, Bokoch GM, Muller U. Integrin-linked kinase regulates Bergmann glial differentiation during cerebellar development. Mol Cell Neurosci. 2006;33(2):109–25. https://doi.org/10.1016/j.mcn.2006.06.013.

    Article  CAS  PubMed  Google Scholar 

  37. Frick A, Grammel D, Schmidt F, Poschl J, Priller M, Pagella P, et al. Proper cerebellar development requires expression of beta1-integrin in Bergmann glia, but not in granule neurons. Glia. 2012;60(5):820–32. https://doi.org/10.1002/glia.22314.

    Article  PubMed  Google Scholar 

  38. Qiu Z, Cang Y, Goff SP. Abl family tyrosine kinases are essential for basement membrane integrity and cortical lamination in the cerebellum. J Neurosci. 2010;30(43):14430–9. https://doi.org/10.1523/JNEUROSCI.2861-10.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yue Q, Groszer M, Gil JS, Berk AJ, Messing A, Wu H, et al. PTEN deletion in Bergmann glia leads to premature differentiation and affects laminar organization. Development. 2005;132(14):3281–91. https://doi.org/10.1242/dev.01891.

    Article  CAS  PubMed  Google Scholar 

  40. Dahmane N, Ruiz I, Altaba A. Sonic hedgehog regulates the growth and patterning of the cerebellum. Development. 1999;126(14):3089–100.

    PubMed  Google Scholar 

  41. Mecklenburg N, Martinez-Lopez JE, Moreno-Bravo JA, Perez-Balaguer A, Puelles E, Martinez S. Growth and differentiation factor 10 (Gdf10) is involved in Bergmann glial cell development under Shh regulation. Glia. 2014;62(10):1713–23. https://doi.org/10.1002/glia.22710.

    Article  PubMed  Google Scholar 

  42. Wen J, Yang HB, Zhou B, Lou HF, Duan S. Beta-catenin is critical for cerebellar foliation and lamination. PLoS One. 2013;8(5):e64451. https://doi.org/10.1371/journal.pone.0064451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang X, Tsai JW, LaMonica B, Kriegstein AR. A new subtype of progenitor cell in the mouse embryonic neocortex. Nat Neurosci. 2011;14(5):555–61. https://doi.org/10.1038/nn.2807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin Y, Chen L, Lin C, Luo Y, Tsai RY, Wang F. Neuron-derived FGF9 is essential for scaffold formation of Bergmann radial fibers and migration of granule neurons in the cerebellum. Dev Biol. 2009;329(1):44–54. https://doi.org/10.1016/j.ydbio.2009.02.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Meier F, Giesert F, Delic S, Faus-Kessler T, Matheus F, Simeone A, et al. FGF/FGFR2 signaling regulates the generation and correct positioning of Bergmann glia cells in the developing mouse cerebellum. PLoS One. 2014;9(7):e101124. https://doi.org/10.1371/journal.pone.0101124.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Smith KM, Maragnoli ME, Phull PM, Tran KM, Choubey L, Vaccarino FM. Fgfr1 inactivation in the mouse telencephalon results in impaired maturation of interneurons expressing parvalbumin. PLoS One. 2014;9(8):e103696. https://doi.org/10.1371/journal.pone.0103696.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Grossmann KS, Rosario M, Birchmeier C, Birchmeier W. The tyrosine phosphatase Shp2 in development and cancer. Adv Cancer Res. 2010;106:53–89. https://doi.org/10.1016/S0065-230X(10)06002-1.

    Article  CAS  PubMed  Google Scholar 

  48. Feng GS. Shp2-mediated molecular signaling in control of embryonic stem cell self-renewal and differentiation. Cell Res. 2007;17(1):37–41. https://doi.org/10.1038/sj.cr.7310140.

    Article  CAS  PubMed  Google Scholar 

  49. Gauthier AS, Furstoss O, Araki T, Chan R, Neel BG, Kaplan DR, et al. Control of CNS cell-fate decisions by SHP-2 and its dysregulation in Noonan syndrome. Neuron. 2007;54(2):245–62. https://doi.org/10.1016/j.neuron.2007.03.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ke Y, Zhang EE, Hagihara K, Wu D, Pang Y, Klein R, et al. Deletion of Shp2 in the brain leads to defective proliferation and differentiation in neural stem cells and early postnatal lethality. Mol Cell Biol. 2007;27(19):6706–17. https://doi.org/10.1128/MCB.01225-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hagihara K, Zhang EE, Ke YH, Liu G, Liu JJ, Rao Y, et al. Shp2 acts downstream of SDF-1alpha/CXCR4 in guiding granule cell migration during cerebellar development. Dev Biol. 2009;334(1):276–84. https://doi.org/10.1016/j.ydbio.2009.07.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li K, Leung AW, Guo Q, Yang W, Li JY. Shp2-dependent ERK signaling is essential for induction of Bergmann glia and foliation of the cerebellum. J Neurosci. 2014;34(3):922–31. https://doi.org/10.1523/JNEUROSCI.3476-13.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Heng X, Guo Q, Leung AW, Li JY. Analogous mechanism regulating formation of neocortical basal radial glia and cerebellar Bergmann glia. Elife. 2017; 6.

  54. Yaguchi Y, Yu T, Ahmed MU, Berry M, Mason I, Basson MA. Fibroblast growth factor (FGF) gene expression in the developing cerebellum suggests multiple roles for FGF signaling during cerebellar morphogenesis and development. Dev Dyn. 2009;238(8):2058–72. https://doi.org/10.1002/dvdy.22013.

    Article  CAS  PubMed  Google Scholar 

  55. Mao J, McGlinn E, Huang P, Tabin CJ, McMahon AP. Fgf-dependent Etv4/5 activity is required for posterior restriction of sonic hedgehog and promoting outgrowth of the vertebrate limb. Dev Cell. 2009;16(4):600–6. https://doi.org/10.1016/j.devcel.2009.02.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang Z, Verheyden JM, Hassell JA, Sun X. FGF-regulated Etv genes are essential for repressing Shh expression in mouse limb buds. Dev Cell. 2009;16(4):607–13. https://doi.org/10.1016/j.devcel.2009.02.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sudarov A, Joyner AL. Cerebellum morphogenesis: the foliation pattern is orchestrated by multi-cellular anchoring centers. Neural Dev. 2007;2(1):26. https://doi.org/10.1186/1749-8104-2-26.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ma S, Kwon HJ, Huang Z. Ric-8a, a guanine nucleotide exchange factor for heterotrimeric G proteins, regulates bergmann glia-basement membrane adhesion during cerebellar foliation. J Neurosci. 2012;32(43):14979–93. https://doi.org/10.1523/JNEUROSCI.1282-12.2012.

    Article  CAS  PubMed  Google Scholar 

  59. Mills J, Niewmierzycka A, Oloumi A, Rico B, St-Arnaud R, Mackenzie IR, et al. Critical role of integrin-linked kinase in granule cell precursor proliferation and cerebellar development. J Neurosci. 2006;26(3):830–40. https://doi.org/10.1523/JNEUROSCI.1852-05.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Qu Q, Smith FI. Neuronal migration defects in cerebellum of the Largemyd mouse are associated with disruptions in Bergmann glia organization and delayed migration of granule neurons. Cerebellum. 2005;4(4):261–70. https://doi.org/10.1080/14734220500358351.

    Article  PubMed  Google Scholar 

  61. Kaartinen V, Gonzalez-Gomez I, Voncken JW, Haataja L, Faure E, Nagy A, et al. Abnormal function of astroglia lacking Abr and Bcr RacGAPs. Development. 2001;128(21):4217–27.

    CAS  PubMed  Google Scholar 

  62. Delaney CL, Brenner M, Messing A. Conditional ablation of cerebellar astrocytes in postnatal transgenic mice. J Neurosci. 1996;16(21):6908–18.

    CAS  PubMed  Google Scholar 

  63. Hoser M, Baader SL, Bosl MR, Ihmer A, Wegner M, Sock E. Prolonged glial expression of Sox4 in the CNS leads to architectural cerebellar defects and ataxia. J Neurosci. 2007;27(20):5495–505. https://doi.org/10.1523/JNEUROSCI.1384-07.2007.

    Article  CAS  PubMed  Google Scholar 

  64. Gotz M, Huttner WB. The cell biology of neurogenesis. Nat Rev Mol Cell Biol. 2005;6(10):777–88. https://doi.org/10.1038/nrm1739.

    Article  PubMed  Google Scholar 

  65. Fietz SA, Kelava I, Vogt J, Wilsch-Brauninger M, Stenzel D, Fish JL, et al. OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat Neurosci. 2010;13(6):690–9. https://doi.org/10.1038/nn.2553.

    Article  CAS  PubMed  Google Scholar 

  66. Hansen DV, Lui JH, Parker PR, Kriegstein AR. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature. 2010;464(7288):554–61. https://doi.org/10.1038/nature08845.

    Article  CAS  PubMed  Google Scholar 

  67. Reillo I, de Juan Romero C, Garcia-Cabezas MA, Borrell V. A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb Cortex. 2011;21(7):1674–94. https://doi.org/10.1093/cercor/bhq238.

    Article  PubMed  Google Scholar 

  68. Martinez-Martinez MA, De Juan Romero C, Fernandez V, Cardenas A, Gotz M, Borrell V. A restricted period for formation of outer subventricular zone defined by Cdh1 and Trnp1 levels. Nat Commun. 2016;7:11812. https://doi.org/10.1038/ncomms11812.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Shitamukai A, Konno D, Matsuzaki F. Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors. J Neurosci. 2011;31(10):3683–95. https://doi.org/10.1523/JNEUROSCI.4773-10.2011.

    Article  CAS  PubMed  Google Scholar 

  70. Borrell V, Gotz M. Role of radial glial cells in cerebral cortex folding. Curr Opin Neurobiol. 2014;27:39–46. https://doi.org/10.1016/j.conb.2014.02.007.

    Article  CAS  PubMed  Google Scholar 

  71. Dehay C, Kennedy H, Kosik KS. The outer subventricular zone and primate-specific cortical complexification. Neuron. 2015;85(4):683–94. https://doi.org/10.1016/j.neuron.2014.12.060.

    Article  CAS  PubMed  Google Scholar 

  72. Fernandez V, Llinares-Benadero C, Borrell V. Cerebral cortex expansion and folding: what have we learned? EMBO J. 2016;35(10):1021–44. 10.15252/embj.201593701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fietz SA, Huttner WB. Cortical progenitor expansion, self-renewal and neurogenesis—a polarized perspective. Curr Opin Neurobiol. 2011;21(1):23–35. https://doi.org/10.1016/j.conb.2010.10.002.

    Article  CAS  PubMed  Google Scholar 

  74. Geschwind DH, Rakic P. Cortical evolution: judge the brain by its cover. Neuron. 2013;80(3):633–47. https://doi.org/10.1016/j.neuron.2013.10.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lui JH, Nowakowski TJ, Pollen AA, Javaherian A, Kriegstein AR, Oldham MC. Radial glia require PDGFD-PDGFRbeta signalling in human but not mouse neocortex. Nature. 2014;515(7526):264–8. https://doi.org/10.1038/nature13973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nonaka-Kinoshita M, Reillo I, Artegiani B, Martinez-Martinez MA, Nelson M, Borrell V, et al. Regulation of cerebral cortex size and folding by expansion of basal progenitors. EMBO J. 2013;32(13):1817–28. https://doi.org/10.1038/emboj.2013.96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Reillo I, Borrell V. Germinal zones in the developing cerebral cortex of ferret: ontogeny, cell cycle kinetics, and diversity of progenitors. Cereb Cortex. 2012;22(9):2039–54. https://doi.org/10.1093/cercor/bhr284.

    Article  PubMed  Google Scholar 

  78. Pollen AA, Nowakowski TJ, Chen J, Retallack H, Sandoval-Espinosa C, Nicholas CR, et al. Molecular identity of human outer radial glia during cortical development. Cell. 2015;163(1):55–67. https://doi.org/10.1016/j.cell.2015.09.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Thomsen ER, Mich JK, Yao Z, Hodge RD, Doyle AM, Jang S, et al. Fixed single-cell transcriptomic characterization of human radial glial diversity. Nat Methods. 2016;13(1):87–93. https://doi.org/10.1038/nmeth.3629.

    Article  CAS  PubMed  Google Scholar 

  80. Pollen AA, Nowakowski TJ, Shuga J, Wang X, Leyrat AA, Lui JH, et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat Biotechnol. 2014;32(10):1053–8. https://doi.org/10.1038/nbt.2967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tang N, Marshall WF, McMahon M, Metzger RJ, Martin GR. Control of mitotic spindle angle by the RAS-regulated ERK1/2 pathway determines lung tube shape. Science. 2011;333(6040):342–5. https://doi.org/10.1126/science.1204831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. LaMonica BE, Lui JH, Hansen DV, Kriegstein AR. Mitotic spindle orientation predicts outer radial glial cell generation in human neocortex. Nat Commun. 2013;4:1665. https://doi.org/10.1038/ncomms2647.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hevner RF, Haydar TF. The (not necessarily) convoluted role of basal radial glia in cortical neurogenesis. Cereb Cortex. 2012;22(2):465–8. https://doi.org/10.1093/cercor/bhr336.

    Article  PubMed  Google Scholar 

  84. Kelava I, Reillo I, Murayama AY, Kalinka AT, Stenzel D, Tomancak P, et al. Abundant occurrence of basal radial glia in the subventricular zone of embryonic neocortex of a lissencephalic primate, the common marmoset Callithrix jacchus. Cereb Cortex. 2012;22(2):469–81. https://doi.org/10.1093/cercor/bhr301.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. John Wizeman for the critical proofreading of our manuscript.

Funding

This work was supported by a grant from the National Institutes of Health (R01MH094914) to J. Li.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Y. H. Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leung, A.W., Li, J.Y.H. The Molecular Pathway Regulating Bergmann Glia and Folia Generation in the Cerebellum. Cerebellum 17, 42–48 (2018). https://doi.org/10.1007/s12311-017-0904-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-017-0904-3

Keywords

Navigation