Advertisement

The Cerebellum

, Volume 17, Issue 1, pp 12–16 | Cite as

The Ferdinando Rossi Memorial Lecture: Zones and Stripes—Pattern Formation in the Cerebellum

  • Richard Hawkes
Review

Abstract

The cerebellum has a complex architecture—highly reproducible and conserved through evolution. Cerebellar architecture is organized around the Purkinje cell. Purkinje cells in the mouse cerebellum come in many different subtypes, identifiable by expression markers, sensitivity to mutation, etc. These are organized first into five “transverse zones,” each of which is further subdivided into dozens of reproducible “stripes.” This arrangement serves as the scaffolding to organize afferent topography and restrict the distribution of excitatory and inhibitory interneurons. This brief review will survey some of the mechanisms that lead to the formation of this elaborate pattern during cerebellar development. Pattern formation in the cerebellar cortex is a multistage process that begins early in development with the generation of the various Purkinje cell subtypes, and matures through the dispersal of Purkinje cell clusters into stripes. Two developmental processes will be discussed in particular: the mechanisms that lead to Purkinje cell subtype specification (i.e., how different kinds of Purkinje cells are made) and the role played by Purkinje cell migration in pattern formation (i.e., how these Purkinje cell subtypes end up in a reproducible array of stripes).

Keywords

Stripes Transverse zones Purkinje cells Development Zebrins 

Notes

Acknowledgements

I am grateful to Giacomo Consalez (Milan), Hassan Marzban (Winnipeg), and Roy Sillitoe (Houston) for reviewing an early draft of this MS; my many friends and colleagues for over 30 years of collaboration on zones and stripes; and the Big Rock Brewery (Calgary), without whose constant sustinance the present essay might never have been completed.

Compliance with Ethical Standards

Conflict of Interest

The author declares that he has no conflicts of interest.

References

  1. 1.
    Brochu G, Maler L, Zebrin HR II. A polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. J Comp Neurol. 1990;291:538–52.CrossRefPubMedGoogle Scholar
  2. 2.
    Meek J, Hafmans TGM, Maler L, Hawkes R. Distribution of zebrin II in the gigantocerebellum of the mormyrid fish Gnathonemus petersii compared to other teleosts. J Comp Neurol. 1992;316:17–31.CrossRefPubMedGoogle Scholar
  3. 3.
    Pakan JM, Iwaniuk AN, Wylie DR, Hawkes R, Marzban H. Purkinje cell compartmentation as revealed by zebrin II expression in the cerebellar cortex of pigeons (Columba livia). J Comp Neurol. 2007;501:619–30.CrossRefPubMedGoogle Scholar
  4. 4.
    Sillitoe RV, Marzban H, Larouche M, Zahedi S, Affanni J, Hawkes R. Conservation of the architecture of the anterior lobe vermis of the cerebellum across mammalian species. Prog Brain Res. 2005;148:283–97.CrossRefPubMedGoogle Scholar
  5. 5.
    Marzban H, Hawkes R. On the architecture of the posterior zone of the cerebellum. Cerebellum. 2011;10:422–34.CrossRefPubMedGoogle Scholar
  6. 6.
    Apps R, Hawkes R. Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci. 2009;10:670–81.CrossRefPubMedGoogle Scholar
  7. 7.
    Ruigrok TJ. Ins and outs of cerebellar modules. Cerebellum. 2011;10:464–74.CrossRefPubMedGoogle Scholar
  8. 8.
    Consalez GG, Hawkes R. The compartmental restriction of cerebellar interneurons. Front Neural Circuits. 2013;6:123.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cerminara NL, Lang EJ, Sillitoe RV, Apps R. Redefining the cerebellar cortex as an assembly of non-uniform Purkinje cell microcircuits. Nat Rev Neurosci. 2015;16:79–93.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Armstrong CL, Hawkes R. Pattern formation in the cerebellum. Colloquium Digital Library of Life Sciences. Morgan & Claypool: 2014; pp. 138.Google Scholar
  11. 11.
    Sarna J, Hawkes R. Patterned Purkinje cell death in the cerebellum. Prog Neurobiol. 2003;70:473–507.CrossRefPubMedGoogle Scholar
  12. 12.
    Leto K, Arancillo M, Becker EB, Buffo A, Chiang C, et al. Consensus paper: cerebellar development. Cerebellum. 2016;15:789–828.CrossRefPubMedGoogle Scholar
  13. 13.
    Hoshino M. Molecular machinery governing GABAergic neuron specification in the cerebellum. Cerebellum. 2006;5:193–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Sgaier SK, Millet S, Villanueva MP, Berenshteyn F, Song C, Joyner AL. Morphogenetic and cellular movements that shape the mouse cerebellum; insights from genetic fate mapping. Neuron. 2005;45:27–40.PubMedGoogle Scholar
  15. 15.
    Hashimoto M, Mikoshiba K. Mediolateral compartmentalization of the cerebellum is determined on the “birth date” of Purkinje cells. J Neurosci. 2003;23:11342–51.PubMedGoogle Scholar
  16. 16.
    Rakic P. Specification of cerebral cortical areas. Science. 1998;241:170–6.CrossRefGoogle Scholar
  17. 17.
    Hawkes R, Faulkner-Jones B, Tam P, Tan SS. Pattern formation in the cerebellum of murine embryonic stem cell chimeras. Eur J Neurosci. 1998;10:790–3.CrossRefPubMedGoogle Scholar
  18. 18.
    Croci L, Chung SH, Masserdotti G, Gianola S, Motti E, Tonini R, et al. A key role for the HLH transcription factor EBF2 (COE2, O/E-3) in Purkinje neuron migration and cerebellar cortical topography. Development. 2006;133:2719–29.CrossRefPubMedGoogle Scholar
  19. 19.
    Chung SH, Marzban H, Croci L, Consalez GG, Hawkes R. Purkinje cell subtype specification in the cerebellar cortex: EBF2 acts to repress the zebrin II-positive Purkinje cell phenotype. Neuroscience. 2008;153:721–32.CrossRefPubMedGoogle Scholar
  20. 20.
    Armstrong CL, Krueger-Naug AM, Currie RW, Hawkes R. Constitutive expression of the 25kDa heat shock protein Hsp25 reveals novel parasagittal bands of Purkinje cells in the adult mouse cerebellar cortex. J Comp Neurol. 2000;416:383–97.CrossRefPubMedGoogle Scholar
  21. 21.
    Sugihara I, Fujita H. Peri- and postnatal development of cerebellar compartments in the mouse. Cerebellum. 2013;12:325–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Rouse RV, Sotelo C. Grafts of dissociated cerebellar cells containing Purkinje cell precursors organize into zebrin I defined compartments. Exp Brain Res. 1990;82:401–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Redies C, Neudert F, Lin J. Cadherins in cerebellar development: translation of embryonic patterning into mature functional compartmentalization. Cerebellum. 2011;10:393–408.CrossRefPubMedGoogle Scholar
  24. 24.
    Voogd J. Cerebellar zones: a personal history. Cerebellum. 2011;10:334–50.CrossRefPubMedGoogle Scholar
  25. 25.
    Paradies MA, Eisenman LM. Evidence of early topographic organization in the embryonic olivocerebellar projection: a model system for the study of pattern formation processes in the central nervous system. Dev Dyn. 1993;197:125–45.CrossRefPubMedGoogle Scholar
  26. 26.
    Grishkat HL, Eisenman LM. Development of the spinocerebellar projection in the prenatal mouse. J Comp Neurol. 1995;363:93–108.CrossRefPubMedGoogle Scholar
  27. 27.
    Sotelo C, Chédotal A. Development of the olivocerebellar system: migration and formation of cerebellar maps. Prog Brain Res. 2005;148:1–20.CrossRefPubMedGoogle Scholar
  28. 28.
    Machold R, Fishell G. Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron. 2005;48:17–24.CrossRefPubMedGoogle Scholar
  29. 29.
    Hawkes R, Beirebach E, Tan S-S. Granule cell dispersion is restricted across transverse boundaries in mouse chimeras. Eur J Neurosci. 1999;11:3800–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Eisenman LM, Hawkes R. 5′-nucleotidase and the mabQ113 antigen share a common distribution in the cerebellar cortex of the mouse. Neuroscience. 1989;31:231–5.CrossRefPubMedGoogle Scholar
  31. 31.
    Reeber SL, Otis TS, Silitoe RV. Bergmann glia are patterned into topographic molecular zones in the developing and adult mouse cerebellum. Cerebellum. 2014;  https://doi.org/10.1007/s12311-014-0571-6.
  32. 32.
    Scott TG. A unique pattern of localization within the cerebellum. Nature. 1963;200:793.CrossRefPubMedGoogle Scholar
  33. 33.
    D’Arcangelo G. Reelin in the years: controlling neuronal migration and maturation in the mammalian brain. Adv Neurosci. 2014;2014(ID 597395):9. https://doi.org/10.4199/C00096ED1V01Y201310DBR011
  34. 34.
    Fujita H, Morita N, Furuichi T, Sugihara I. Clustered fine compartmentalization of the mouse embryonic cerebellar cortex and its rearrangement into the postnatal striped configuration. J Neurosci. 2012;32:15688–703.CrossRefPubMedGoogle Scholar
  35. 35.
    Larouche M, Che PM, Hawkes R. Neurogranin expression identifies a novel array of Purkinje cell parasagittal stripes during mouse cerebellar development. J Comp Neurol. 2006;494:215–27.CrossRefPubMedGoogle Scholar
  36. 36.
    Furutama D, Morita N, Takano R, Sekine Y, Sadakata T, Shinoda Y, et al. Expression of the IP3R1 promoter-driven nls-lacZ transgene in Purkinje cell parasagittal arrays of developing mouse cerebellum. J Neurosci Res. 2010;88:2810–25.PubMedGoogle Scholar
  37. 37.
    Marzban H, Chung SH, Watanabe M, Hawkes R. Phospholipase Cß4 expression reveals the continuity of cerebellar topography through development. J Comp Neurol. 2007;502:857–71.CrossRefPubMedGoogle Scholar
  38. 38.
    Casoni F, Croci L, Cremona O, Hawkes R, Consalez GG. Early Purkinje cell development and the origins of cerebellar patterning. In: H. Marzban (Ed.) Development of the cerebellum—from molecular aspects to diseases. Cham Springer. 2017; pp. 67–86. https://doi.org/10.1007/978-3-319-59749-2_4.
  39. 39.
    White JJ, Arancillo M, Stay TL, George-Jones N, Levy SL, Heck DH, et al. Cerebellar zonal patterning relies on Purkinje cell neurotransmission. J Neurosci. 2014;34:8231–45.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Crépel F. Regression of functional synapses in the immature mammalian cerebellum. Trends Neurosci. 1982;5:266–9.CrossRefGoogle Scholar
  41. 41.
    Sillitoe RV, Benson MA, Blake DJ, Hawkes R. Abnormal dysbindin expression in cerebellar mossy fiber synapses in the mdx mouse model of Duchenne muscular dystrophy. J Neurosci. 2003;23:6576–85.PubMedGoogle Scholar
  42. 42.
    Welker W. Spatial organization of somatosensory projections to granule cell cerebellar cortex: functional and connectional implications of fractured somatotopy. In: King JS, editor. New Concepts in Cerebellar Neurobiology. New York: A. R. Liss; 1987. p. 239–80.Google Scholar
  43. 43.
    Bower JM, Kassel J. Variability in tactile projection patterns to cerebellar folia crus IIA of the Norway rat. J Comp Neurol. 1990;302:768–78.CrossRefPubMedGoogle Scholar
  44. 44.
    Ekerot CF, Larson B. Termination in overlapping sagittal zones in cerebellar anterior lobe of mossy and climbing fiber paths activated from dorsal funiculus. Exp Brain Res. 1980;38:163–72.CrossRefPubMedGoogle Scholar
  45. 45.
    Hawkes R, Gallagher E, Ozol K. Blebs in the cerebellar granular layer as a sign of structural inhomogeneity. I. Anterior lobe vermis. Acta Anat. 1997;158:205–14.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Cell Biology & Anatomy and Hotchkiss Brain Institute, Cumming School of MedicineUniversity of CalgaryCalgaryCanada

Personalised recommendations