The Neglected Cerebello-Limbic Pathways and Neuropsychological Features of the Cerebellum in Emotion
Notes
Compliance with Ethical Standards
Conflict of Interest
The authors declare that they have no conflict of interests.
References
- 1.Adamaszek M, D’Agata F, Ferrucci R, Habas C, Keulen S, Kirkby KC, et al. Consensus paper: cerebellum and emotion. Cerebellum. 2016;16(2):552–76.CrossRefGoogle Scholar
- 2.Habas C. The cerebellum: from motor coordination to cognitive function. Rev Neurol. 2001;157(12):1471–97.PubMedGoogle Scholar
- 3.Schutter DJ, van Honk J. The cerebellum on the rise in human emotion. Cerebellum. 2005;4(4):290–4.CrossRefPubMedGoogle Scholar
- 4.Schamahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6(3):254–67.CrossRefGoogle Scholar
- 5.Perciavalle V, Apps R, Bracha V, Delgado-Garcìa JM, Gibson AR, Leggio M, et al. Consensus paper: currents views on the role of cerebellar interpositus nucleus in movement control and emotion. Cerebellum. 2013;12(5):738–57.CrossRefPubMedGoogle Scholar
- 6.Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29(26):8586–94.CrossRefPubMedPubMedCentralGoogle Scholar
- 7.Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44(2):489–501.CrossRefPubMedGoogle Scholar
- 8.Heath RG. Correlation of brain function with emotional behavior. Biol Psychiatry. 1976;11(4):463–80.PubMedGoogle Scholar
- 9.Damasio AR, Grabowsky TJ, Bechara A, Damasio H, Ponto LL, Parvizi J, et al. Subcortcal and cortical brain activity during the feeling of self-generated emotions. Nat Neurosci. 2000;3(10):1049–56.CrossRefPubMedGoogle Scholar
- 10.Dietrichs E, Haines DE, Røste GK, Røste LS. Hypothalamocerebellar and cerebellohypothalamic projections—circuits for the regulating nonsomatic cerebellar activity ? Histol Histopathol. 1994;9(3):603–14.PubMedGoogle Scholar
- 11.Zhu JN, Yung WH, Kwok-Chong Chow B, Chan YS, Wang JJ. The cerebellar-hypothalamic circuits: potential pathways underlying cerebellar involvement in somatic-visceral integration. Brain Res Rev. 2006;52(1):93–106.CrossRefPubMedGoogle Scholar
- 12.Miyata M, Sasaki K. HRP studies on thalamocortical neurons related to the cerebellocerebral projection in the monkey. Brain Res. 1983;274(2):213–24.CrossRefPubMedGoogle Scholar
- 13.Haines DE, Dietrichs E, Mihailoff GA, McDonald EF. The cerebellar-hypothalamic axis: basic circuits and clinical observations. Int Rev Neurobiol. 1997;41:83–107.CrossRefPubMedGoogle Scholar
- 14.Sears LL, Steinmetz JE. Acquisition of classically conditioned-related activity in the hippocampus is affected by lesions of the cerebellar interpositus nucleus. Behav Neurosci. 1990;104(5):681–92.CrossRefPubMedGoogle Scholar
- 15.Min JK, Valentine PA, Teskey GC. Effect of complete and partial bilateral lesions of the deep cerebellar nuclei on amygdaloid kindling in rats. Epilepsia. 1998;39(7):692–9.CrossRefPubMedGoogle Scholar
- 16.Ryou JW, Cho SY, Kim HT. Lesion of the cerebellar interpositus nucleus or the red nucleus affects classically conditioned neuronal activity in the hippocampus. Prog Neuro-Psychopharmacol Biol Psychiatry. 1998;22(1):169–85.CrossRefGoogle Scholar
- 17.Anderson ME, De Vito JL. An analysis of potentially converging inputs to the rostral ventral thalamic nuclei of the cat. Exp Brain Res. 1987;68(2):260–76.CrossRefPubMedGoogle Scholar
- 18.Anand BK, Malhotra CL, Singh B, Dua S. Cerebellar projections to limbic system. J Neurophysiol. 1959;22(4):451–7.CrossRefPubMedGoogle Scholar
- 19.Harper JW, Heath RG. Anatomic connections of the fastigial nucleus to the rostral forebrain in the cat. Exp Neurol. 1973;39(2):285–92.CrossRefPubMedGoogle Scholar
- 20.Snider RS, Maiti A. Cerebellar contributions to the Papez circuits. J Neurosci Res. 1976;2(2):133–46.CrossRefPubMedGoogle Scholar
- 21.Haines DE, May PJ, Dietrichs E. Neuronal connections between the cerebellar nuclei and hypothalamus in Macaca fascicularis: cerebello-visceral circuits. J Comp Neurol. 1990;299(1):106–22.CrossRefPubMedGoogle Scholar
- 22.Dietrichs E, Haines DE. Do the same hypothalamic neurons project to both amygdala and cerebellum ? Brain Res. 1986;364(2):241–8.CrossRefPubMedGoogle Scholar
- 23.Onat F, Cavdar S. Cerebellar connections: hypothalamus. Cerebellum. 2003;2(4):263–9.CrossRefPubMedGoogle Scholar
- 24.Heath RG, Harper JW. Ascending projections of the cerebellar fastigial nucleus to the hippocampus, amygdala, and other temporal sites: evoked potential and histological studies in monkeys and cats. Exp Neurol. 1974;45(2):268–87.CrossRefPubMedGoogle Scholar
- 25.Heath RG, Dempesy CW, Fontana CJ, Myers WA. Cerebellar stimulation: effects on septal region, hippocampus and amygdala of cats and rats. Biol Psychiatry. 1978;13(5):501–29.PubMedGoogle Scholar
- 26.Lu X, Miyachi S, Takada M. Anatomical evidence for the involvement of medial cerebellar output from the interpositus nuclei in cognitive functions. Proc Natl Acad Sci U S A. 2012;109(46):18980–4.CrossRefPubMedPubMedCentralGoogle Scholar
- 27.Mintz M, Wang-Ninio Y. Two-stage theory of conditioning: involvement of the cerebellum and the amygdala. Brain Res. 2001;897(1–2):150–6.CrossRefPubMedGoogle Scholar
- 28.Clark GA, McCormick DA, Lavond DG, Thompson RF. Effects of lesions of cerebellar nuclei on conditioned behavioral and hippocampal neuronal responses. Brain Res. 1984;291(1):125–36.CrossRefPubMedGoogle Scholar
- 29.Dum RP, Li C, Strick PL. Motor and nonmotor domains in the monkey dentate. Ann N Y Acad Sci. 2002;978:289–301.CrossRefPubMedGoogle Scholar
- 30.Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89(1):634–9.CrossRefPubMedGoogle Scholar
- 31.Cohen D, Chambers WW, Sprague JM. Experimental study of the efferent projections from the cerebellar nuclei to the brainstem of the cat. J Comp Neurol. 1958;109(2):233–59.CrossRefPubMedGoogle Scholar
- 32.Rouiller EM, Liang F, Babalian A, Moret V, Wiesendanger M. Cerebellothalamocortical and pallidothalamocortical projections to the primary and supplementary motor cortical areas: a multiple tracing study in macaque monkeys. J Comp Neurol. 1994;345(2):185–213.CrossRefPubMedGoogle Scholar
- 33.Berger TW, Weikart CL, Basset JL, Orr WB. Lesions of the retrosplenial cortex produce deficits in reversal learning of the rabbit nictitating membrane response: implications for potential interactions between hippocampal and cerebellar brain systems. Behav Neurosci. 1986;100(6):802–9.CrossRefPubMedGoogle Scholar
- 34.Heath RG, Dempesy CW, Fontana CJ, Fitzjarrell AT. Feedback loop between cerebellum and septal-hippocampal sites: its role in emotion and epilepsy. Biol Psychiatry. 1980;15(4):541–56.PubMedGoogle Scholar
- 35.Asanuma C, Thach WT, Jones EG. Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral thalamic region of the monkey. Brain Res. 1983;286(3):237–65.CrossRefPubMedGoogle Scholar
- 36.Yamamoto T, Yoshida K, Yoshikawa H, Kishimoto Y, Oka H. The medial dorsal nucleus is one of the thalamic relays of the cerebellocerebral responses to the frontal association cortex in the monkey: horseradish peroxidase and fluorescent dye double staining study. Brain Res. 1992;579(2):315–20.CrossRefPubMedGoogle Scholar
- 37.Schamahmann JD. From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp. 1996;4(3):174–98.CrossRefGoogle Scholar
- 38.Robertson RT, Kaitz SS. Thalamic connections with limbic cortex. I. Thalamocortical projections. J Comp Neurol. 1981;195(3):501–25.CrossRefPubMedGoogle Scholar
- 39.Person RJ, Andrezik JA, Dormer KJ, Foreman RD. Fastigial nucleus projections in the midbrain and thalamus in dogs. Neuroscience. 1986;18:105–20.CrossRefPubMedGoogle Scholar
- 40.Wright NF, Erichsen JT, Vann SD, O’Mara SM, Aggleton JP. Parallel but separate inputs from limbic corticies to the mammillary bodies and anterior thalamic nuclei in the rat. J Comp Neurol. 2010;518(12):2334–54.CrossRefPubMedPubMedCentralGoogle Scholar
- 41.Vertes RP, Linley SB, Hoover WB. Limbic circuitry of the midline thalamus. Neurosci Biobehav Rev. 2015;54:89–107.CrossRefPubMedPubMedCentralGoogle Scholar
- 42.Middleton FA, Strick PL. Dentate output channels: motor and cognitive components. Prog Brain Res. 1997;114:553–66.CrossRefPubMedGoogle Scholar
- 43.Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21(2):700–12.PubMedGoogle Scholar
- 44.Habas C. Functional imaging of the deep cerebellar nuclei: a review. Cerebellum. 2010;9(1):22–8.CrossRefPubMedGoogle Scholar
- 45.Stanton GB. Topographical organization of ascending cerebellar projections from the dentate and interposed nuclei in Macaca mulatta: an anterograde degeneration study. J Comp Neurol. 1980;190(4):699–731.CrossRefPubMedGoogle Scholar
- 46.Tsuru N, Kawasaki H, Genda S, Hara K, Hashiguchi H, Ueda Y. Effects of unilateral dentate nucleus lesions on amygdaloid kindling in rats. Epilepsia. 1992;33(2):213–21.CrossRefPubMedGoogle Scholar
- 47.Nashold BS, Slaughter DG. Effects or destroying the deep cerebellar nuclei regions in the man. J Neurosurg. 1969;31(2):172–86.CrossRefPubMedGoogle Scholar
- 48.Henderson JM. “Connectomic surgery”: diffusion tensor imaging (DTI) tractography as a targeting modality for surgical modulation of neural networks. Front Integr Neurosci. 2012;6:15.CrossRefPubMedPubMedCentralGoogle Scholar
- 49.Milardi D, Arrigo A, Anastasi GP, Cacciola A, Marino S, Mormina E, et al. Extensive direct subcortical cerebellum basal ganglia connections in human brain as revealed by constrained spherical deconvolution tractography. Front Neuroanat. 2016;10:29.CrossRefPubMedPubMedCentralGoogle Scholar
- 50.Cacciola A, Milardi D, Livrea P, Flace P, Anastasi G, Quartarone A. The know and missing links between the cerebellum, basal ganglia, and cerebral cortex. Cerebellum. 2017;16(3):753–5.CrossRefPubMedGoogle Scholar
- 51.Sillery E, Bittar RG, Robson MD, Behrens TE, Stein J, Aziz TZ, et al. Connectivity of the human periventricular-periaqueductal gray region. J Neurosurg. 2005;103(6):1030–4.CrossRefPubMedGoogle Scholar
- 52.Arrigo A, Maormina E, Anastasi GP, Gaeta M, Calamuneri A, Quartarone A, et al. Constrained spherical deconvolution analysis of the limbic network in human, with emphasis on a direct cerebello-limbic pathway. Front Hum Neurosci. 2014;8:987.CrossRefPubMedPubMedCentralGoogle Scholar
- 53.Cacciola A, Milardi D, Calamuneri A, Bonanno L, Marino S, Ciolli P, et al. Contrastained spherical deconvolution tractography reveals cerebello-mammilary connections in humans. Cerebellum. 2017;16(2):483–95.CrossRefPubMedGoogle Scholar
- 54.Baumann O, Mattingley JB. Functional topography of primary emotion processing in the human cerebellum. NeuroImage. 2012;61(4):805–11.CrossRefPubMedGoogle Scholar
- 55.Turner BM, Paradiso S, Marvel CL, Pierson R, Boles Ponto LL, Hichwa RD, et al. The cerebellum and emotional experience. Neuropsychologia. 2007;45(6):1331–41.CrossRefPubMedGoogle Scholar
- 56.Park JY, Gu BM, Kang DH, Shin YW, Choi CH, Lee JM, et al. Integration of cross-modal emotional information in the human brain: an fMRI study. Cortex. 2010;46(2):161–9.CrossRefPubMedGoogle Scholar
- 57.Ferrucci R, Giannicola G, Rosa M, Fumagalli M, Boggio PS, Hallet M, et al. Cerebellum and processing of negative facial emotions cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness. Cognit Emot. 2012;26(5):786–99.CrossRefGoogle Scholar
- 58.Troisi E, Silvestrini M, Matteis M, Monaldo BC, Vernieri F, Caltagirone C. Emotion-related cerebral asymmetry: hemodynamics measured by functional ultrasound. J Neurol. 1999;246(12):1172–6. Erratum in: J Neurol 2000;247(2):157CrossRefPubMedGoogle Scholar
- 59.Hofer A, Siedentopf CM, Ischebeck A, Rettenbacher MA, Verius M, Felber S, et al. Gender differences in regional cerebral activity during the perception of emotion: a functional MRI study. NeuroImage. 2006;32(2):854–62.CrossRefPubMedGoogle Scholar
- 60.Gazzola V, Keysers C. The observation and execution of actions share motor and somatosensory voxels in all tested subjects: single-subject analyses of unsmoothed fMRI data. Cereb Cortex. 2009;19(6):1239–55.CrossRefPubMedGoogle Scholar
- 61.Schraa-Tam CK, Rietdijk WJ, Verbeke WJ, Dietvorst RC, Van Den Berg WE, Bagozzi RP, et al. fMRI activities in the emotional cerebellum: a preference for negative stimuli and goal-directed behavior. Cerebellum. 2012;11(1):233–45.CrossRefPubMedGoogle Scholar
- 62.D’Agata F, Caroppo P, Baudino B, Caglio M, Croce M, Bergui M, et al. The recognition of facial emotions in spinocerebellar ataxia patients. Cerebellum. 2011;10(3):600–10.CrossRefPubMedGoogle Scholar
- 63.Uono S, Sato W, Kochiyama T, Sawada R, Kubota Y, Yoshimura S, et al. Neural substrates of the ability to recognize facial expressions: a voxel-based morphometry study. Soc Cogn Affect Neurosci. 2017;12(3):487–95.PubMedGoogle Scholar
- 64.Moriguchi Y, Decety J, Ohnishi T, Maeda M, Mori T, Nemoto K, et al. Empathy and judging others’s pain: an fMRI study of alexithymia. Cereb Cortex. 2007;17(9):2223–34.CrossRefPubMedGoogle Scholar
- 65.Leroi I, O’Hearn E, Marsh L, Lyketsos CG, Rosenblatt A, Ross CA, et al. Psychopathology in patients with degenerative diseases: a comparision to Huntington’s disease. Am J Psychiatry. 2002;159(8):1306–14.CrossRefPubMedGoogle Scholar
- 66.Fitzpatrick LE, Jackson M, Crowe SF. The relationship between alcoholic cerebellar degeneration and cognitive and emotional functioning. Neurosci Biobehav Rev. 2008;32(3):466–85.CrossRefPubMedGoogle Scholar
- 67.Liu L, Zeng LL, Li Y, Ma Q, Li B, Shen H, et al. Altered cerebellar functional connectivity with intrinsic connectivity networks in adults with major depressive disorder. PLoS One. 2012;7(6):e39516.CrossRefPubMedPubMedCentralGoogle Scholar
- 68.Ma Q, Zeng LL, Shen H, Liu L, Hu D. Altered cerebellar-cerebral resting-state functional connectivity reliably identifies major depressive disorder. Brain Res. 2013;1495:86–94.CrossRefPubMedGoogle Scholar
- 69.Guo W, Liu F, Liu J, Yu M, Zhang Z, Liu G, et al. Increased cerebellar-default-mode-network connectivity in drug-naive major depressive disorder at rest. Medicine. 2015;94(9):e560.CrossRefPubMedPubMedCentralGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC 2017