The Cerebellum

, Volume 17, Issue 2, pp 243–246 | Cite as

The Neglected Cerebello-Limbic Pathways and Neuropsychological Features of the Cerebellum in Emotion

  • Paolo Flace
  • Angelo Quartarone
  • Giovanni Colangelo
  • Demetrio Milardi
  • Alberto Cacciola
  • Giuseppina Rizzo
  • Paolo Livrea
  • Giuseppe Anastasi
Letter to the Editor

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interests.

References

  1. 1.
    Adamaszek M, D’Agata F, Ferrucci R, Habas C, Keulen S, Kirkby KC, et al. Consensus paper: cerebellum and emotion. Cerebellum. 2016;16(2):552–76.CrossRefGoogle Scholar
  2. 2.
    Habas C. The cerebellum: from motor coordination to cognitive function. Rev Neurol. 2001;157(12):1471–97.PubMedGoogle Scholar
  3. 3.
    Schutter DJ, van Honk J. The cerebellum on the rise in human emotion. Cerebellum. 2005;4(4):290–4.CrossRefPubMedGoogle Scholar
  4. 4.
    Schamahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6(3):254–67.CrossRefGoogle Scholar
  5. 5.
    Perciavalle V, Apps R, Bracha V, Delgado-Garcìa JM, Gibson AR, Leggio M, et al. Consensus paper: currents views on the role of cerebellar interpositus nucleus in movement control and emotion. Cerebellum. 2013;12(5):738–57.CrossRefPubMedGoogle Scholar
  6. 6.
    Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29(26):8586–94.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44(2):489–501.CrossRefPubMedGoogle Scholar
  8. 8.
    Heath RG. Correlation of brain function with emotional behavior. Biol Psychiatry. 1976;11(4):463–80.PubMedGoogle Scholar
  9. 9.
    Damasio AR, Grabowsky TJ, Bechara A, Damasio H, Ponto LL, Parvizi J, et al. Subcortcal and cortical brain activity during the feeling of self-generated emotions. Nat Neurosci. 2000;3(10):1049–56.CrossRefPubMedGoogle Scholar
  10. 10.
    Dietrichs E, Haines DE, Røste GK, Røste LS. Hypothalamocerebellar and cerebellohypothalamic projections—circuits for the regulating nonsomatic cerebellar activity ? Histol Histopathol. 1994;9(3):603–14.PubMedGoogle Scholar
  11. 11.
    Zhu JN, Yung WH, Kwok-Chong Chow B, Chan YS, Wang JJ. The cerebellar-hypothalamic circuits: potential pathways underlying cerebellar involvement in somatic-visceral integration. Brain Res Rev. 2006;52(1):93–106.CrossRefPubMedGoogle Scholar
  12. 12.
    Miyata M, Sasaki K. HRP studies on thalamocortical neurons related to the cerebellocerebral projection in the monkey. Brain Res. 1983;274(2):213–24.CrossRefPubMedGoogle Scholar
  13. 13.
    Haines DE, Dietrichs E, Mihailoff GA, McDonald EF. The cerebellar-hypothalamic axis: basic circuits and clinical observations. Int Rev Neurobiol. 1997;41:83–107.CrossRefPubMedGoogle Scholar
  14. 14.
    Sears LL, Steinmetz JE. Acquisition of classically conditioned-related activity in the hippocampus is affected by lesions of the cerebellar interpositus nucleus. Behav Neurosci. 1990;104(5):681–92.CrossRefPubMedGoogle Scholar
  15. 15.
    Min JK, Valentine PA, Teskey GC. Effect of complete and partial bilateral lesions of the deep cerebellar nuclei on amygdaloid kindling in rats. Epilepsia. 1998;39(7):692–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Ryou JW, Cho SY, Kim HT. Lesion of the cerebellar interpositus nucleus or the red nucleus affects classically conditioned neuronal activity in the hippocampus. Prog Neuro-Psychopharmacol Biol Psychiatry. 1998;22(1):169–85.CrossRefGoogle Scholar
  17. 17.
    Anderson ME, De Vito JL. An analysis of potentially converging inputs to the rostral ventral thalamic nuclei of the cat. Exp Brain Res. 1987;68(2):260–76.CrossRefPubMedGoogle Scholar
  18. 18.
    Anand BK, Malhotra CL, Singh B, Dua S. Cerebellar projections to limbic system. J Neurophysiol. 1959;22(4):451–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Harper JW, Heath RG. Anatomic connections of the fastigial nucleus to the rostral forebrain in the cat. Exp Neurol. 1973;39(2):285–92.CrossRefPubMedGoogle Scholar
  20. 20.
    Snider RS, Maiti A. Cerebellar contributions to the Papez circuits. J Neurosci Res. 1976;2(2):133–46.CrossRefPubMedGoogle Scholar
  21. 21.
    Haines DE, May PJ, Dietrichs E. Neuronal connections between the cerebellar nuclei and hypothalamus in Macaca fascicularis: cerebello-visceral circuits. J Comp Neurol. 1990;299(1):106–22.CrossRefPubMedGoogle Scholar
  22. 22.
    Dietrichs E, Haines DE. Do the same hypothalamic neurons project to both amygdala and cerebellum ? Brain Res. 1986;364(2):241–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Onat F, Cavdar S. Cerebellar connections: hypothalamus. Cerebellum. 2003;2(4):263–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Heath RG, Harper JW. Ascending projections of the cerebellar fastigial nucleus to the hippocampus, amygdala, and other temporal sites: evoked potential and histological studies in monkeys and cats. Exp Neurol. 1974;45(2):268–87.CrossRefPubMedGoogle Scholar
  25. 25.
    Heath RG, Dempesy CW, Fontana CJ, Myers WA. Cerebellar stimulation: effects on septal region, hippocampus and amygdala of cats and rats. Biol Psychiatry. 1978;13(5):501–29.PubMedGoogle Scholar
  26. 26.
    Lu X, Miyachi S, Takada M. Anatomical evidence for the involvement of medial cerebellar output from the interpositus nuclei in cognitive functions. Proc Natl Acad Sci U S A. 2012;109(46):18980–4.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Mintz M, Wang-Ninio Y. Two-stage theory of conditioning: involvement of the cerebellum and the amygdala. Brain Res. 2001;897(1–2):150–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Clark GA, McCormick DA, Lavond DG, Thompson RF. Effects of lesions of cerebellar nuclei on conditioned behavioral and hippocampal neuronal responses. Brain Res. 1984;291(1):125–36.CrossRefPubMedGoogle Scholar
  29. 29.
    Dum RP, Li C, Strick PL. Motor and nonmotor domains in the monkey dentate. Ann N Y Acad Sci. 2002;978:289–301.CrossRefPubMedGoogle Scholar
  30. 30.
    Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89(1):634–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Cohen D, Chambers WW, Sprague JM. Experimental study of the efferent projections from the cerebellar nuclei to the brainstem of the cat. J Comp Neurol. 1958;109(2):233–59.CrossRefPubMedGoogle Scholar
  32. 32.
    Rouiller EM, Liang F, Babalian A, Moret V, Wiesendanger M. Cerebellothalamocortical and pallidothalamocortical projections to the primary and supplementary motor cortical areas: a multiple tracing study in macaque monkeys. J Comp Neurol. 1994;345(2):185–213.CrossRefPubMedGoogle Scholar
  33. 33.
    Berger TW, Weikart CL, Basset JL, Orr WB. Lesions of the retrosplenial cortex produce deficits in reversal learning of the rabbit nictitating membrane response: implications for potential interactions between hippocampal and cerebellar brain systems. Behav Neurosci. 1986;100(6):802–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Heath RG, Dempesy CW, Fontana CJ, Fitzjarrell AT. Feedback loop between cerebellum and septal-hippocampal sites: its role in emotion and epilepsy. Biol Psychiatry. 1980;15(4):541–56.PubMedGoogle Scholar
  35. 35.
    Asanuma C, Thach WT, Jones EG. Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral thalamic region of the monkey. Brain Res. 1983;286(3):237–65.CrossRefPubMedGoogle Scholar
  36. 36.
    Yamamoto T, Yoshida K, Yoshikawa H, Kishimoto Y, Oka H. The medial dorsal nucleus is one of the thalamic relays of the cerebellocerebral responses to the frontal association cortex in the monkey: horseradish peroxidase and fluorescent dye double staining study. Brain Res. 1992;579(2):315–20.CrossRefPubMedGoogle Scholar
  37. 37.
    Schamahmann JD. From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp. 1996;4(3):174–98.CrossRefGoogle Scholar
  38. 38.
    Robertson RT, Kaitz SS. Thalamic connections with limbic cortex. I. Thalamocortical projections. J Comp Neurol. 1981;195(3):501–25.CrossRefPubMedGoogle Scholar
  39. 39.
    Person RJ, Andrezik JA, Dormer KJ, Foreman RD. Fastigial nucleus projections in the midbrain and thalamus in dogs. Neuroscience. 1986;18:105–20.CrossRefPubMedGoogle Scholar
  40. 40.
    Wright NF, Erichsen JT, Vann SD, O’Mara SM, Aggleton JP. Parallel but separate inputs from limbic corticies to the mammillary bodies and anterior thalamic nuclei in the rat. J Comp Neurol. 2010;518(12):2334–54.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Vertes RP, Linley SB, Hoover WB. Limbic circuitry of the midline thalamus. Neurosci Biobehav Rev. 2015;54:89–107.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Middleton FA, Strick PL. Dentate output channels: motor and cognitive components. Prog Brain Res. 1997;114:553–66.CrossRefPubMedGoogle Scholar
  43. 43.
    Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21(2):700–12.PubMedGoogle Scholar
  44. 44.
    Habas C. Functional imaging of the deep cerebellar nuclei: a review. Cerebellum. 2010;9(1):22–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Stanton GB. Topographical organization of ascending cerebellar projections from the dentate and interposed nuclei in Macaca mulatta: an anterograde degeneration study. J Comp Neurol. 1980;190(4):699–731.CrossRefPubMedGoogle Scholar
  46. 46.
    Tsuru N, Kawasaki H, Genda S, Hara K, Hashiguchi H, Ueda Y. Effects of unilateral dentate nucleus lesions on amygdaloid kindling in rats. Epilepsia. 1992;33(2):213–21.CrossRefPubMedGoogle Scholar
  47. 47.
    Nashold BS, Slaughter DG. Effects or destroying the deep cerebellar nuclei regions in the man. J Neurosurg. 1969;31(2):172–86.CrossRefPubMedGoogle Scholar
  48. 48.
    Henderson JM. “Connectomic surgery”: diffusion tensor imaging (DTI) tractography as a targeting modality for surgical modulation of neural networks. Front Integr Neurosci. 2012;6:15.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Milardi D, Arrigo A, Anastasi GP, Cacciola A, Marino S, Mormina E, et al. Extensive direct subcortical cerebellum basal ganglia connections in human brain as revealed by constrained spherical deconvolution tractography. Front Neuroanat. 2016;10:29.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Cacciola A, Milardi D, Livrea P, Flace P, Anastasi G, Quartarone A. The know and missing links between the cerebellum, basal ganglia, and cerebral cortex. Cerebellum. 2017;16(3):753–5.CrossRefPubMedGoogle Scholar
  51. 51.
    Sillery E, Bittar RG, Robson MD, Behrens TE, Stein J, Aziz TZ, et al. Connectivity of the human periventricular-periaqueductal gray region. J Neurosurg. 2005;103(6):1030–4.CrossRefPubMedGoogle Scholar
  52. 52.
    Arrigo A, Maormina E, Anastasi GP, Gaeta M, Calamuneri A, Quartarone A, et al. Constrained spherical deconvolution analysis of the limbic network in human, with emphasis on a direct cerebello-limbic pathway. Front Hum Neurosci. 2014;8:987.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Cacciola A, Milardi D, Calamuneri A, Bonanno L, Marino S, Ciolli P, et al. Contrastained spherical deconvolution tractography reveals cerebello-mammilary connections in humans. Cerebellum. 2017;16(2):483–95.CrossRefPubMedGoogle Scholar
  54. 54.
    Baumann O, Mattingley JB. Functional topography of primary emotion processing in the human cerebellum. NeuroImage. 2012;61(4):805–11.CrossRefPubMedGoogle Scholar
  55. 55.
    Turner BM, Paradiso S, Marvel CL, Pierson R, Boles Ponto LL, Hichwa RD, et al. The cerebellum and emotional experience. Neuropsychologia. 2007;45(6):1331–41.CrossRefPubMedGoogle Scholar
  56. 56.
    Park JY, Gu BM, Kang DH, Shin YW, Choi CH, Lee JM, et al. Integration of cross-modal emotional information in the human brain: an fMRI study. Cortex. 2010;46(2):161–9.CrossRefPubMedGoogle Scholar
  57. 57.
    Ferrucci R, Giannicola G, Rosa M, Fumagalli M, Boggio PS, Hallet M, et al. Cerebellum and processing of negative facial emotions cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness. Cognit Emot. 2012;26(5):786–99.CrossRefGoogle Scholar
  58. 58.
    Troisi E, Silvestrini M, Matteis M, Monaldo BC, Vernieri F, Caltagirone C. Emotion-related cerebral asymmetry: hemodynamics measured by functional ultrasound. J Neurol. 1999;246(12):1172–6. Erratum in: J Neurol 2000;247(2):157CrossRefPubMedGoogle Scholar
  59. 59.
    Hofer A, Siedentopf CM, Ischebeck A, Rettenbacher MA, Verius M, Felber S, et al. Gender differences in regional cerebral activity during the perception of emotion: a functional MRI study. NeuroImage. 2006;32(2):854–62.CrossRefPubMedGoogle Scholar
  60. 60.
    Gazzola V, Keysers C. The observation and execution of actions share motor and somatosensory voxels in all tested subjects: single-subject analyses of unsmoothed fMRI data. Cereb Cortex. 2009;19(6):1239–55.CrossRefPubMedGoogle Scholar
  61. 61.
    Schraa-Tam CK, Rietdijk WJ, Verbeke WJ, Dietvorst RC, Van Den Berg WE, Bagozzi RP, et al. fMRI activities in the emotional cerebellum: a preference for negative stimuli and goal-directed behavior. Cerebellum. 2012;11(1):233–45.CrossRefPubMedGoogle Scholar
  62. 62.
    D’Agata F, Caroppo P, Baudino B, Caglio M, Croce M, Bergui M, et al. The recognition of facial emotions in spinocerebellar ataxia patients. Cerebellum. 2011;10(3):600–10.CrossRefPubMedGoogle Scholar
  63. 63.
    Uono S, Sato W, Kochiyama T, Sawada R, Kubota Y, Yoshimura S, et al. Neural substrates of the ability to recognize facial expressions: a voxel-based morphometry study. Soc Cogn Affect Neurosci. 2017;12(3):487–95.PubMedGoogle Scholar
  64. 64.
    Moriguchi Y, Decety J, Ohnishi T, Maeda M, Mori T, Nemoto K, et al. Empathy and judging others’s pain: an fMRI study of alexithymia. Cereb Cortex. 2007;17(9):2223–34.CrossRefPubMedGoogle Scholar
  65. 65.
    Leroi I, O’Hearn E, Marsh L, Lyketsos CG, Rosenblatt A, Ross CA, et al. Psychopathology in patients with degenerative diseases: a comparision to Huntington’s disease. Am J Psychiatry. 2002;159(8):1306–14.CrossRefPubMedGoogle Scholar
  66. 66.
    Fitzpatrick LE, Jackson M, Crowe SF. The relationship between alcoholic cerebellar degeneration and cognitive and emotional functioning. Neurosci Biobehav Rev. 2008;32(3):466–85.CrossRefPubMedGoogle Scholar
  67. 67.
    Liu L, Zeng LL, Li Y, Ma Q, Li B, Shen H, et al. Altered cerebellar functional connectivity with intrinsic connectivity networks in adults with major depressive disorder. PLoS One. 2012;7(6):e39516.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Ma Q, Zeng LL, Shen H, Liu L, Hu D. Altered cerebellar-cerebral resting-state functional connectivity reliably identifies major depressive disorder. Brain Res. 2013;1495:86–94.CrossRefPubMedGoogle Scholar
  69. 69.
    Guo W, Liu F, Liu J, Yu M, Zhang Z, Liu G, et al. Increased cerebellar-default-mode-network connectivity in drug-naive major depressive disorder at rest. Medicine. 2015;94(9):e560.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Basic Medical Sciences, Neuroscience and Sense OrgansUniversity of Bari ‘Aldo Moro’BariItaly
  2. 2.Department of Life ScienceBrunel UniversityLondonUK
  3. 3.Department of Biomedical, Dental Sciences and Morphological and Functional ImagesUniversity of MessinaMessinaItaly
  4. 4.IRCCS Centro Neurolesi ‘Bonino Pulejo’MessinaItaly

Personalised recommendations