Skip to main content

Advertisement

Log in

The Neglected Cerebello-Limbic Pathways and Neuropsychological Features of the Cerebellum in Emotion

  • Letter to the Editor
  • Published:
The Cerebellum Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Adamaszek M, D’Agata F, Ferrucci R, Habas C, Keulen S, Kirkby KC, et al. Consensus paper: cerebellum and emotion. Cerebellum. 2016;16(2):552–76.

    Article  Google Scholar 

  2. Habas C. The cerebellum: from motor coordination to cognitive function. Rev Neurol. 2001;157(12):1471–97.

    CAS  PubMed  Google Scholar 

  3. Schutter DJ, van Honk J. The cerebellum on the rise in human emotion. Cerebellum. 2005;4(4):290–4.

    Article  PubMed  Google Scholar 

  4. Schamahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6(3):254–67.

    Article  Google Scholar 

  5. Perciavalle V, Apps R, Bracha V, Delgado-Garcìa JM, Gibson AR, Leggio M, et al. Consensus paper: currents views on the role of cerebellar interpositus nucleus in movement control and emotion. Cerebellum. 2013;12(5):738–57.

    Article  PubMed  Google Scholar 

  6. Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29(26):8586–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44(2):489–501.

    Article  PubMed  Google Scholar 

  8. Heath RG. Correlation of brain function with emotional behavior. Biol Psychiatry. 1976;11(4):463–80.

    CAS  PubMed  Google Scholar 

  9. Damasio AR, Grabowsky TJ, Bechara A, Damasio H, Ponto LL, Parvizi J, et al. Subcortcal and cortical brain activity during the feeling of self-generated emotions. Nat Neurosci. 2000;3(10):1049–56.

    Article  CAS  PubMed  Google Scholar 

  10. Dietrichs E, Haines DE, Røste GK, Røste LS. Hypothalamocerebellar and cerebellohypothalamic projections—circuits for the regulating nonsomatic cerebellar activity ? Histol Histopathol. 1994;9(3):603–14.

    CAS  PubMed  Google Scholar 

  11. Zhu JN, Yung WH, Kwok-Chong Chow B, Chan YS, Wang JJ. The cerebellar-hypothalamic circuits: potential pathways underlying cerebellar involvement in somatic-visceral integration. Brain Res Rev. 2006;52(1):93–106.

    Article  PubMed  Google Scholar 

  12. Miyata M, Sasaki K. HRP studies on thalamocortical neurons related to the cerebellocerebral projection in the monkey. Brain Res. 1983;274(2):213–24.

    Article  CAS  PubMed  Google Scholar 

  13. Haines DE, Dietrichs E, Mihailoff GA, McDonald EF. The cerebellar-hypothalamic axis: basic circuits and clinical observations. Int Rev Neurobiol. 1997;41:83–107.

    Article  CAS  PubMed  Google Scholar 

  14. Sears LL, Steinmetz JE. Acquisition of classically conditioned-related activity in the hippocampus is affected by lesions of the cerebellar interpositus nucleus. Behav Neurosci. 1990;104(5):681–92.

    Article  CAS  PubMed  Google Scholar 

  15. Min JK, Valentine PA, Teskey GC. Effect of complete and partial bilateral lesions of the deep cerebellar nuclei on amygdaloid kindling in rats. Epilepsia. 1998;39(7):692–9.

    Article  CAS  PubMed  Google Scholar 

  16. Ryou JW, Cho SY, Kim HT. Lesion of the cerebellar interpositus nucleus or the red nucleus affects classically conditioned neuronal activity in the hippocampus. Prog Neuro-Psychopharmacol Biol Psychiatry. 1998;22(1):169–85.

    Article  CAS  Google Scholar 

  17. Anderson ME, De Vito JL. An analysis of potentially converging inputs to the rostral ventral thalamic nuclei of the cat. Exp Brain Res. 1987;68(2):260–76.

    Article  CAS  PubMed  Google Scholar 

  18. Anand BK, Malhotra CL, Singh B, Dua S. Cerebellar projections to limbic system. J Neurophysiol. 1959;22(4):451–7.

    Article  CAS  PubMed  Google Scholar 

  19. Harper JW, Heath RG. Anatomic connections of the fastigial nucleus to the rostral forebrain in the cat. Exp Neurol. 1973;39(2):285–92.

    Article  CAS  PubMed  Google Scholar 

  20. Snider RS, Maiti A. Cerebellar contributions to the Papez circuits. J Neurosci Res. 1976;2(2):133–46.

    Article  CAS  PubMed  Google Scholar 

  21. Haines DE, May PJ, Dietrichs E. Neuronal connections between the cerebellar nuclei and hypothalamus in Macaca fascicularis: cerebello-visceral circuits. J Comp Neurol. 1990;299(1):106–22.

    Article  CAS  PubMed  Google Scholar 

  22. Dietrichs E, Haines DE. Do the same hypothalamic neurons project to both amygdala and cerebellum ? Brain Res. 1986;364(2):241–8.

    Article  CAS  PubMed  Google Scholar 

  23. Onat F, Cavdar S. Cerebellar connections: hypothalamus. Cerebellum. 2003;2(4):263–9.

    Article  PubMed  Google Scholar 

  24. Heath RG, Harper JW. Ascending projections of the cerebellar fastigial nucleus to the hippocampus, amygdala, and other temporal sites: evoked potential and histological studies in monkeys and cats. Exp Neurol. 1974;45(2):268–87.

    Article  CAS  PubMed  Google Scholar 

  25. Heath RG, Dempesy CW, Fontana CJ, Myers WA. Cerebellar stimulation: effects on septal region, hippocampus and amygdala of cats and rats. Biol Psychiatry. 1978;13(5):501–29.

    CAS  PubMed  Google Scholar 

  26. Lu X, Miyachi S, Takada M. Anatomical evidence for the involvement of medial cerebellar output from the interpositus nuclei in cognitive functions. Proc Natl Acad Sci U S A. 2012;109(46):18980–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mintz M, Wang-Ninio Y. Two-stage theory of conditioning: involvement of the cerebellum and the amygdala. Brain Res. 2001;897(1–2):150–6.

    Article  CAS  PubMed  Google Scholar 

  28. Clark GA, McCormick DA, Lavond DG, Thompson RF. Effects of lesions of cerebellar nuclei on conditioned behavioral and hippocampal neuronal responses. Brain Res. 1984;291(1):125–36.

    Article  CAS  PubMed  Google Scholar 

  29. Dum RP, Li C, Strick PL. Motor and nonmotor domains in the monkey dentate. Ann N Y Acad Sci. 2002;978:289–301.

    Article  PubMed  Google Scholar 

  30. Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89(1):634–9.

    Article  PubMed  Google Scholar 

  31. Cohen D, Chambers WW, Sprague JM. Experimental study of the efferent projections from the cerebellar nuclei to the brainstem of the cat. J Comp Neurol. 1958;109(2):233–59.

    Article  CAS  PubMed  Google Scholar 

  32. Rouiller EM, Liang F, Babalian A, Moret V, Wiesendanger M. Cerebellothalamocortical and pallidothalamocortical projections to the primary and supplementary motor cortical areas: a multiple tracing study in macaque monkeys. J Comp Neurol. 1994;345(2):185–213.

    Article  CAS  PubMed  Google Scholar 

  33. Berger TW, Weikart CL, Basset JL, Orr WB. Lesions of the retrosplenial cortex produce deficits in reversal learning of the rabbit nictitating membrane response: implications for potential interactions between hippocampal and cerebellar brain systems. Behav Neurosci. 1986;100(6):802–9.

    Article  CAS  PubMed  Google Scholar 

  34. Heath RG, Dempesy CW, Fontana CJ, Fitzjarrell AT. Feedback loop between cerebellum and septal-hippocampal sites: its role in emotion and epilepsy. Biol Psychiatry. 1980;15(4):541–56.

    CAS  PubMed  Google Scholar 

  35. Asanuma C, Thach WT, Jones EG. Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral thalamic region of the monkey. Brain Res. 1983;286(3):237–65.

    Article  CAS  PubMed  Google Scholar 

  36. Yamamoto T, Yoshida K, Yoshikawa H, Kishimoto Y, Oka H. The medial dorsal nucleus is one of the thalamic relays of the cerebellocerebral responses to the frontal association cortex in the monkey: horseradish peroxidase and fluorescent dye double staining study. Brain Res. 1992;579(2):315–20.

    Article  CAS  PubMed  Google Scholar 

  37. Schamahmann JD. From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp. 1996;4(3):174–98.

    Article  Google Scholar 

  38. Robertson RT, Kaitz SS. Thalamic connections with limbic cortex. I. Thalamocortical projections. J Comp Neurol. 1981;195(3):501–25.

    Article  CAS  PubMed  Google Scholar 

  39. Person RJ, Andrezik JA, Dormer KJ, Foreman RD. Fastigial nucleus projections in the midbrain and thalamus in dogs. Neuroscience. 1986;18:105–20.

    Article  CAS  PubMed  Google Scholar 

  40. Wright NF, Erichsen JT, Vann SD, O’Mara SM, Aggleton JP. Parallel but separate inputs from limbic corticies to the mammillary bodies and anterior thalamic nuclei in the rat. J Comp Neurol. 2010;518(12):2334–54.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vertes RP, Linley SB, Hoover WB. Limbic circuitry of the midline thalamus. Neurosci Biobehav Rev. 2015;54:89–107.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Middleton FA, Strick PL. Dentate output channels: motor and cognitive components. Prog Brain Res. 1997;114:553–66.

    Article  CAS  PubMed  Google Scholar 

  43. Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21(2):700–12.

    CAS  PubMed  Google Scholar 

  44. Habas C. Functional imaging of the deep cerebellar nuclei: a review. Cerebellum. 2010;9(1):22–8.

    Article  PubMed  Google Scholar 

  45. Stanton GB. Topographical organization of ascending cerebellar projections from the dentate and interposed nuclei in Macaca mulatta: an anterograde degeneration study. J Comp Neurol. 1980;190(4):699–731.

    Article  CAS  PubMed  Google Scholar 

  46. Tsuru N, Kawasaki H, Genda S, Hara K, Hashiguchi H, Ueda Y. Effects of unilateral dentate nucleus lesions on amygdaloid kindling in rats. Epilepsia. 1992;33(2):213–21.

    Article  CAS  PubMed  Google Scholar 

  47. Nashold BS, Slaughter DG. Effects or destroying the deep cerebellar nuclei regions in the man. J Neurosurg. 1969;31(2):172–86.

    Article  PubMed  Google Scholar 

  48. Henderson JM. “Connectomic surgery”: diffusion tensor imaging (DTI) tractography as a targeting modality for surgical modulation of neural networks. Front Integr Neurosci. 2012;6:15.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Milardi D, Arrigo A, Anastasi GP, Cacciola A, Marino S, Mormina E, et al. Extensive direct subcortical cerebellum basal ganglia connections in human brain as revealed by constrained spherical deconvolution tractography. Front Neuroanat. 2016;10:29.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cacciola A, Milardi D, Livrea P, Flace P, Anastasi G, Quartarone A. The know and missing links between the cerebellum, basal ganglia, and cerebral cortex. Cerebellum. 2017;16(3):753–5.

    Article  PubMed  Google Scholar 

  51. Sillery E, Bittar RG, Robson MD, Behrens TE, Stein J, Aziz TZ, et al. Connectivity of the human periventricular-periaqueductal gray region. J Neurosurg. 2005;103(6):1030–4.

    Article  PubMed  Google Scholar 

  52. Arrigo A, Maormina E, Anastasi GP, Gaeta M, Calamuneri A, Quartarone A, et al. Constrained spherical deconvolution analysis of the limbic network in human, with emphasis on a direct cerebello-limbic pathway. Front Hum Neurosci. 2014;8:987.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Cacciola A, Milardi D, Calamuneri A, Bonanno L, Marino S, Ciolli P, et al. Contrastained spherical deconvolution tractography reveals cerebello-mammilary connections in humans. Cerebellum. 2017;16(2):483–95.

    Article  PubMed  Google Scholar 

  54. Baumann O, Mattingley JB. Functional topography of primary emotion processing in the human cerebellum. NeuroImage. 2012;61(4):805–11.

    Article  PubMed  Google Scholar 

  55. Turner BM, Paradiso S, Marvel CL, Pierson R, Boles Ponto LL, Hichwa RD, et al. The cerebellum and emotional experience. Neuropsychologia. 2007;45(6):1331–41.

    Article  PubMed  Google Scholar 

  56. Park JY, Gu BM, Kang DH, Shin YW, Choi CH, Lee JM, et al. Integration of cross-modal emotional information in the human brain: an fMRI study. Cortex. 2010;46(2):161–9.

    Article  PubMed  Google Scholar 

  57. Ferrucci R, Giannicola G, Rosa M, Fumagalli M, Boggio PS, Hallet M, et al. Cerebellum and processing of negative facial emotions cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness. Cognit Emot. 2012;26(5):786–99.

    Article  Google Scholar 

  58. Troisi E, Silvestrini M, Matteis M, Monaldo BC, Vernieri F, Caltagirone C. Emotion-related cerebral asymmetry: hemodynamics measured by functional ultrasound. J Neurol. 1999;246(12):1172–6. Erratum in: J Neurol 2000;247(2):157

    Article  CAS  PubMed  Google Scholar 

  59. Hofer A, Siedentopf CM, Ischebeck A, Rettenbacher MA, Verius M, Felber S, et al. Gender differences in regional cerebral activity during the perception of emotion: a functional MRI study. NeuroImage. 2006;32(2):854–62.

    Article  PubMed  Google Scholar 

  60. Gazzola V, Keysers C. The observation and execution of actions share motor and somatosensory voxels in all tested subjects: single-subject analyses of unsmoothed fMRI data. Cereb Cortex. 2009;19(6):1239–55.

    Article  PubMed  Google Scholar 

  61. Schraa-Tam CK, Rietdijk WJ, Verbeke WJ, Dietvorst RC, Van Den Berg WE, Bagozzi RP, et al. fMRI activities in the emotional cerebellum: a preference for negative stimuli and goal-directed behavior. Cerebellum. 2012;11(1):233–45.

    Article  PubMed  Google Scholar 

  62. D’Agata F, Caroppo P, Baudino B, Caglio M, Croce M, Bergui M, et al. The recognition of facial emotions in spinocerebellar ataxia patients. Cerebellum. 2011;10(3):600–10.

    Article  PubMed  Google Scholar 

  63. Uono S, Sato W, Kochiyama T, Sawada R, Kubota Y, Yoshimura S, et al. Neural substrates of the ability to recognize facial expressions: a voxel-based morphometry study. Soc Cogn Affect Neurosci. 2017;12(3):487–95.

    PubMed  Google Scholar 

  64. Moriguchi Y, Decety J, Ohnishi T, Maeda M, Mori T, Nemoto K, et al. Empathy and judging others’s pain: an fMRI study of alexithymia. Cereb Cortex. 2007;17(9):2223–34.

    Article  PubMed  Google Scholar 

  65. Leroi I, O’Hearn E, Marsh L, Lyketsos CG, Rosenblatt A, Ross CA, et al. Psychopathology in patients with degenerative diseases: a comparision to Huntington’s disease. Am J Psychiatry. 2002;159(8):1306–14.

    Article  PubMed  Google Scholar 

  66. Fitzpatrick LE, Jackson M, Crowe SF. The relationship between alcoholic cerebellar degeneration and cognitive and emotional functioning. Neurosci Biobehav Rev. 2008;32(3):466–85.

    Article  CAS  PubMed  Google Scholar 

  67. Liu L, Zeng LL, Li Y, Ma Q, Li B, Shen H, et al. Altered cerebellar functional connectivity with intrinsic connectivity networks in adults with major depressive disorder. PLoS One. 2012;7(6):e39516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ma Q, Zeng LL, Shen H, Liu L, Hu D. Altered cerebellar-cerebral resting-state functional connectivity reliably identifies major depressive disorder. Brain Res. 2013;1495:86–94.

    Article  CAS  PubMed  Google Scholar 

  69. Guo W, Liu F, Liu J, Yu M, Zhang Z, Liu G, et al. Increased cerebellar-default-mode-network connectivity in drug-naive major depressive disorder at rest. Medicine. 2015;94(9):e560.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Flace.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flace, P., Quartarone, A., Colangelo, G. et al. The Neglected Cerebello-Limbic Pathways and Neuropsychological Features of the Cerebellum in Emotion. Cerebellum 17, 243–246 (2018). https://doi.org/10.1007/s12311-017-0884-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-017-0884-3

Navigation