Skip to main content

Symposium in Honor of Ferdinando Rossi: a Passionate Journey through the Cerebellar Mysteries

Abstract

To remember our friend and colleague Ferdinando Rossi, prematurely passed away on 24th January 2014, a symposium was held during the ninth FENS meeting in Milan. It was focused on the development and plasticity of the cerebellum, the main topics of Ferdinando's research. From the talks of the invited speakers, Giacomo Consalez, Karl Schilling, Alain Chédotal, and Chris De Zeeuw, it clearly emerged that Ferdinando had a huge impact on the research of many scientists like them, as well as in the whole field of brain development and regeneration. With this symposium, we celebrated a brilliant scientist, devoted to Neuroscience with tireless passion and curiosity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Alcaraz WA, Gold DA, Raponi E, Gent PM, Concepcion D, Hamilton BA. Zfp423 controls proliferation and differentiation of neural precursors in cerebellar vermis formation. Proc Natl Acad Sci U S A. 2006;103:19424–9.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  2. Warming S, Rachel RA, Jenkins NA, Copeland NG. Zfp423 is required for normal cerebellar development. Mol Cell Biol. 2006;26:6913–22.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  3. Cheng LE, Zhang J, Reed RR. The transcription factor Zfp423/OAZ is required for cerebellar development and CNS midline patterning. Dev Biol. 2007;307:43–52.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  4. Chaki M, Airik R, Ghosh AK, Giles RH, Chen R, Slaats GG, et al. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell. 2012;150:533–48.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  5. Croci L, Chung SH, Masserdotti G, Gianola S, Bizzoca A, Gennarini G, et al. A key role for the HLH transcription factor EBF2COE2, O/E-3 in Purkinje neuron migration and cerebellar cortical topography. Development. 2006;133:2719–29.

    CAS  PubMed  Article  Google Scholar 

  6. Florio M, Leto K, Muzio L, Tinterri A, Badaloni A, Croci L, et al. Neurogenin 2 regulates progenitor cell-cycle progression and Purkinje cell dendritogenesis in cerebellar development. Development. 2012;139:2308–20.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  7. Leto K, Carletti B, Williams IM, Magrassi L, Rossi F. Different types of cerebellar GABAergic interneurons originate from a common pool of multipotent progenitor cells. J Neurosci. 2006;26:11682–94.

    CAS  PubMed  Article  Google Scholar 

  8. Leto K, Bartolini A, Yanagawa Y, Obata K, Magrassi L, Schilling K, et al. Laminar fate and phenotype specification of cerebellar GABAergic interneurons. J Neurosci. 2009;29:7079–91.

    CAS  PubMed  Article  Google Scholar 

  9. Nguyen-Ba-Charvet KT, Chédotal A. Role of Slit proteins in the vertebrate brain. J Physiol Paris. 2002;96(1–2):91–8.

    CAS  PubMed  Article  Google Scholar 

  10. Blockus H, Chédotal A. The multifaceted roles of Slits and Robos in cortical circuits: from proliferation to axon guidance and neurological diseases. Curr Opin Neurobiol. 2014;27C:82–8.

    Article  Google Scholar 

  11. Rossi F, Wiklund L, Van Der Want JJ, Strata P. Climbing fibre plasticity in the cerebellum of adult rat. Eur J Neurosci. 1989;1(5):543–7.

    PubMed  Article  Google Scholar 

  12. Rossi F, Wiklund L, Van Der Want JJ, Strata P. Reinnervation of cerebellar Purkinje cells by climbing fibres surviving a subtotal lesion of the inferior olive in the adult rat. I Development of new collateral branches and terminal plexuses. J Comp Neurol. 1991;308(4):513–35.

    CAS  PubMed  Article  Google Scholar 

  13. Rossi F, Van Der Want JJ, Wiklund L, Strata P. Reinnervation of cerebellar Purkinje cells by climbing fibres surviving a subtotal lesion of the inferior olive in the adult rat. II Synaptic organization on reinnervated Purkinje cells. J Comp Neurol. 1991;308(4):536–54.

    CAS  PubMed  Article  Google Scholar 

  14. Rossi F, Borsello T, Vaudano E, Strata P. Regressive modifications of climbing fibres following Purkinje cell degeneration in the cerebellar cortex of the adult rat. Neuroscience. 1993;53(3):759–78.

    CAS  PubMed  Article  Google Scholar 

  15. Rossi F, Jankovski A, Sotelo C. Target neuron controls the integrity of afferent axon phenotype: a study on the Purkinje cell-climbing fiber system in cerebellar mutant mice. J Neurosci. 1995;15(3 Pt 1):2040–56.

    CAS  PubMed  Google Scholar 

  16. Renier N, Schonewille M, Giraudet F, Badura A, Tessier-Lavigne M, Avan P, et al. Genetic dissection of the function of hindbrain axonal commissures. PLoS Biol. 2010;8:e1000325.

    PubMed Central  PubMed  Article  Google Scholar 

  17. Badura A, Schonewille M, Voges K, Galliano E, Renier N, Gao Z, et al. Climbing fiber input shapes reciprocity of Purkinje cell firing. Neuron. 2013;78(4):700–13.

    CAS  PubMed  Article  Google Scholar 

  18. Zagrebelsky M, Buffo A, Skerra A, Schwab ME, Strata P, Rossi F. Retrograde regulation of growth-associated gene expression in adult rat Purkinje cells by myelin-associated neurite growth inhibitory proteins. J Neurosci. 1998;18(19):7912–29.

    CAS  PubMed  Google Scholar 

  19. Buffo A, Zagrebelsky M, Huber AB, Skerra A, Schwab ME, Strata P, et al. Application of neutralizing antibodies against NI-35/250 myelin-associated neurite growth inhibitory proteins to the adult rat cerebellum induces sprouting of uninjured purkinje cell axons. J Neurosci. 2000;20(6):2275–86.

    CAS  PubMed  Google Scholar 

  20. Gianola S, Savio T, Schwab ME, Rossi F. Cell-autonomous mechanisms and myelin-associated factors contribute to the development of Purkinje axon intracortical plexus in the rat cerebellum. J Neurosci. 2003;23(11):4613–24.

    CAS  PubMed  Google Scholar 

  21. Foscarin S, Ponchione D, Pajaj E, Leto K, Gawlak M, Wilczynski GM, et al. Experience-dependent plasticity and modulation of growth regulatory molecules at central synapses. PLoSOne. 2011;6(1):e16666.

    CAS  Article  Google Scholar 

  22. Boele HJ, KoeKKoeK SK, De Zeeuw CI, Ruigrok TJ. Axonal sprouting and formation of terminals in the adult cerebellum during associative motor learning. J Neurosci. 2013;33(45):17897–907.

    CAS  PubMed  Article  Google Scholar 

Download references

Conflict of Interest

Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Leto.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leto, K., Carulli, D. & Buffo, A. Symposium in Honor of Ferdinando Rossi: a Passionate Journey through the Cerebellar Mysteries. Cerebellum 13, 791–794 (2014). https://doi.org/10.1007/s12311-014-0590-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-014-0590-3