The Cerebellum

, Volume 13, Issue 6, pp 791–794 | Cite as

Symposium in Honor of Ferdinando Rossi: a Passionate Journey through the Cerebellar Mysteries

  • K. LetoEmail author
  • D. Carulli
  • A. Buffo
Letter to the Editor


To remember our friend and colleague Ferdinando Rossi, prematurely passed away on 24th January 2014, a symposium was held during the ninth FENS meeting in Milan. It was focused on the development and plasticity of the cerebellum, the main topics of Ferdinando's research. From the talks of the invited speakers, Giacomo Consalez, Karl Schilling, Alain Chédotal, and Chris De Zeeuw, it clearly emerged that Ferdinando had a huge impact on the research of many scientists like them, as well as in the whole field of brain development and regeneration. With this symposium, we celebrated a brilliant scientist, devoted to Neuroscience with tireless passion and curiosity.


Conflict of Interest

Authors declare no conflict of interest.


  1. 1.
    Alcaraz WA, Gold DA, Raponi E, Gent PM, Concepcion D, Hamilton BA. Zfp423 controls proliferation and differentiation of neural precursors in cerebellar vermis formation. Proc Natl Acad Sci U S A. 2006;103:19424–9.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Warming S, Rachel RA, Jenkins NA, Copeland NG. Zfp423 is required for normal cerebellar development. Mol Cell Biol. 2006;26:6913–22.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Cheng LE, Zhang J, Reed RR. The transcription factor Zfp423/OAZ is required for cerebellar development and CNS midline patterning. Dev Biol. 2007;307:43–52.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Chaki M, Airik R, Ghosh AK, Giles RH, Chen R, Slaats GG, et al. Exome capture reveals ZNF423 and CEP164 mutations, linking renal ciliopathies to DNA damage response signaling. Cell. 2012;150:533–48.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Croci L, Chung SH, Masserdotti G, Gianola S, Bizzoca A, Gennarini G, et al. A key role for the HLH transcription factor EBF2COE2, O/E-3 in Purkinje neuron migration and cerebellar cortical topography. Development. 2006;133:2719–29.PubMedCrossRefGoogle Scholar
  6. 6.
    Florio M, Leto K, Muzio L, Tinterri A, Badaloni A, Croci L, et al. Neurogenin 2 regulates progenitor cell-cycle progression and Purkinje cell dendritogenesis in cerebellar development. Development. 2012;139:2308–20.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Leto K, Carletti B, Williams IM, Magrassi L, Rossi F. Different types of cerebellar GABAergic interneurons originate from a common pool of multipotent progenitor cells. J Neurosci. 2006;26:11682–94.PubMedCrossRefGoogle Scholar
  8. 8.
    Leto K, Bartolini A, Yanagawa Y, Obata K, Magrassi L, Schilling K, et al. Laminar fate and phenotype specification of cerebellar GABAergic interneurons. J Neurosci. 2009;29:7079–91.PubMedCrossRefGoogle Scholar
  9. 9.
    Nguyen-Ba-Charvet KT, Chédotal A. Role of Slit proteins in the vertebrate brain. J Physiol Paris. 2002;96(1–2):91–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Blockus H, Chédotal A. The multifaceted roles of Slits and Robos in cortical circuits: from proliferation to axon guidance and neurological diseases. Curr Opin Neurobiol. 2014;27C:82–8.CrossRefGoogle Scholar
  11. 11.
    Rossi F, Wiklund L, Van Der Want JJ, Strata P. Climbing fibre plasticity in the cerebellum of adult rat. Eur J Neurosci. 1989;1(5):543–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Rossi F, Wiklund L, Van Der Want JJ, Strata P. Reinnervation of cerebellar Purkinje cells by climbing fibres surviving a subtotal lesion of the inferior olive in the adult rat. I Development of new collateral branches and terminal plexuses. J Comp Neurol. 1991;308(4):513–35.PubMedCrossRefGoogle Scholar
  13. 13.
    Rossi F, Van Der Want JJ, Wiklund L, Strata P. Reinnervation of cerebellar Purkinje cells by climbing fibres surviving a subtotal lesion of the inferior olive in the adult rat. II Synaptic organization on reinnervated Purkinje cells. J Comp Neurol. 1991;308(4):536–54.PubMedCrossRefGoogle Scholar
  14. 14.
    Rossi F, Borsello T, Vaudano E, Strata P. Regressive modifications of climbing fibres following Purkinje cell degeneration in the cerebellar cortex of the adult rat. Neuroscience. 1993;53(3):759–78.PubMedCrossRefGoogle Scholar
  15. 15.
    Rossi F, Jankovski A, Sotelo C. Target neuron controls the integrity of afferent axon phenotype: a study on the Purkinje cell-climbing fiber system in cerebellar mutant mice. J Neurosci. 1995;15(3 Pt 1):2040–56.PubMedGoogle Scholar
  16. 16.
    Renier N, Schonewille M, Giraudet F, Badura A, Tessier-Lavigne M, Avan P, et al. Genetic dissection of the function of hindbrain axonal commissures. PLoS Biol. 2010;8:e1000325.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Badura A, Schonewille M, Voges K, Galliano E, Renier N, Gao Z, et al. Climbing fiber input shapes reciprocity of Purkinje cell firing. Neuron. 2013;78(4):700–13.PubMedCrossRefGoogle Scholar
  18. 18.
    Zagrebelsky M, Buffo A, Skerra A, Schwab ME, Strata P, Rossi F. Retrograde regulation of growth-associated gene expression in adult rat Purkinje cells by myelin-associated neurite growth inhibitory proteins. J Neurosci. 1998;18(19):7912–29.PubMedGoogle Scholar
  19. 19.
    Buffo A, Zagrebelsky M, Huber AB, Skerra A, Schwab ME, Strata P, et al. Application of neutralizing antibodies against NI-35/250 myelin-associated neurite growth inhibitory proteins to the adult rat cerebellum induces sprouting of uninjured purkinje cell axons. J Neurosci. 2000;20(6):2275–86.PubMedGoogle Scholar
  20. 20.
    Gianola S, Savio T, Schwab ME, Rossi F. Cell-autonomous mechanisms and myelin-associated factors contribute to the development of Purkinje axon intracortical plexus in the rat cerebellum. J Neurosci. 2003;23(11):4613–24.PubMedGoogle Scholar
  21. 21.
    Foscarin S, Ponchione D, Pajaj E, Leto K, Gawlak M, Wilczynski GM, et al. Experience-dependent plasticity and modulation of growth regulatory molecules at central synapses. PLoSOne. 2011;6(1):e16666.CrossRefGoogle Scholar
  22. 22.
    Boele HJ, KoeKKoeK SK, De Zeeuw CI, Ruigrok TJ. Axonal sprouting and formation of terminals in the adult cerebellum during associative motor learning. J Neurosci. 2013;33(45):17897–907.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Neuroscience Rita Levi MontalciniUniversity of TurinTorinoItaly
  2. 2.Neuroscience Institute Cavalieri-OttolenghiUniversity of TurinTorinoItaly

Personalised recommendations