Skip to main content

Socioeconomic Status and the Cerebellar Grey Matter Volume. Data from a Well-Characterised Population Sample


The cerebellum is highly sensitive to adverse environmental factors throughout the life span. Socioeconomic deprivation has been associated with greater inflammatory and cardiometabolic risk, and poor neurocognitive function. Given the increasing awareness of the association between early-life adversities on cerebellar structure, we aimed to explore the relationship between early life (ESES) and current socioeconomic status (CSES) and cerebellar volume. T1-weighted MRI was used to create models of cerebellar grey matter volumes in 42 adult neurologically healthy males selected from the Psychological, Social and Biological Determinants of Ill Health study. The relationship between potential risk factors, including ESES, CSES and cerebellar grey matter volumes were examined using multiple regression techniques. We also examined if greater multisystem physiological risk index—derived from inflammatory and cardiometabolic risk markers—mediated the relationship between socioeconomic status (SES) and cerebellar grey matter volume. Both ESES and CSES explained the greatest variance in cerebellar grey matter volume, with age and alcohol use as a covariate in the model. Low CSES explained additional significant variance to low ESES on grey matter decrease. The multisystem physiological risk index mediated the relationship between both early life and current SES and grey matter volume in cerebellum. In a randomly selected sample of neurologically healthy males, poorer socioeconomic status was associated with a smaller cerebellar volume. Early and current socioeconomic status and the multisystem physiological risk index also apparently influence cerebellar volume. These findings provide data on the relationship between socioeconomic deprivation and a brain region highly sensitive to environmental factors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Giedd JN, Schmitt JE, Neale MC. Structural brain magnetic resonance imaging of pediatric twins. Hum Brain Mapp. 2007;28(6):474–81.

    PubMed  Article  Google Scholar 

  2. 2.

    Gilmore JH, Schmitt JE, Knickmeyer RC, Smith JK, Lin W, Styner M, et al. Genetic and environmental contributions to neonatal brain structure: a twin study. Hum Brain Mapp. 2010;31(8):1174–82. PubMed PMID: 20063301. Pubmed Central PMCID: 3109622. Epub 2010/01/12. eng.

    PubMed  Google Scholar 

  3. 3.

    Garel C, Fallet-Bianco C, Guibaud L. The fetal cerebellum: development and common malformations. J Child Neurol. 2011;26(12):1483–92. PubMed PMID: 21954430. Epub 2011/09/29. eng.

    PubMed  Article  Google Scholar 

  4. 4.

    Georgieff MK. Nutrition and the developing brain: nutrient priorities and measurement. Am J Clin Nutr. 2007;85(2):614S–20S. PubMed PMID: 17284765. Epub 2007/02/08. eng.

    PubMed  CAS  Google Scholar 

  5. 5.

    Jaatinen P, Rintala J. Mechanisms of ethanol-induced degeneration in the developing, mature, and aging cerebellum. Cerebellum. 2008;7(3):332–47. PubMed PMID: 18418667. Epub 2008/04/18. eng.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Manto M. Toxic agents causing cereballar ataxia. In: Durr A, Subramony S, editors. Handbook of clinical neurology. New York: Elsevier; 2011. p. 201–13.

    Google Scholar 

  7. 7.

    Diamond A. Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev. 2000;71(1):44–56. PubMed PMID: 10836557. Epub 2000/06/03. eng.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Rapoport M, van Reekum R, Mayberg H. The role of the cerebellum in cognition and behavior: a selective review. J Neuropsychiatry Clin Neurosci. 2000;12(2):193–8. PubMed PMID: 11001597. Epub 2000/09/23. eng.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32(1):413–34.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Hackman DA, Farah MJ, Meaney MJ. Socioeconomic status and the brain: mechanistic insights from human and animal research. Nat Rev Neurosci. 2010;11(9):651–9.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Pollitt RA, Kaufman JS, Rose KM, Diez-Roux AV, Zeng D, Heiss G. Cumulative life course and adult socioeconomic status and markers of inflammation in adulthood. J Epidemiol Community Health. 2008;62(6):484–91. PubMed PMID: 18477746. Epub 2008/05/15. eng.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Pollitt RA, Kaufman JS, Rose KM, Diez-Roux AV, Zeng D, Heiss G. Early-life and adult socioeconomic status and inflammatory risk markers in adulthood. Eur J Epidemiol. 2007;22(1):55–66. PubMed PMID: 17225957. Epub 2007/01/18. eng.

    PubMed  Article  Google Scholar 

  13. 13.

    Pollitt RA, Rose KM, Kaufman JS. Evaluating the evidence for models of life course socioeconomic factors and cardiovascular outcomes: a systematic review. BMC Publ Health. 2005;5:7. PubMed PMID: 15661071. Pubmed Central PMCID: 548689. Epub 2005/01/22. eng.

    Article  Google Scholar 

  14. 14.

    Gimeno D, Marmot MG, Singh-Manoux A. Inflammatory markers and cognitive function in middle-aged adults: the Whitehall II study. Psychoneuroendocrinology. 2008;33(10):1322–34. PubMed PMID: 18774232. Pubmed Central PMCID: 2613425. Epub 2008/09/09. eng.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Cournot M, Marquie JC, Ansiau D, Martinaud C, Fonds H, Ferrieres J, et al. Relation between body mass index and cognitive function in healthy middle-aged men and women. Neurology. 2006;67(7):1208–14. PubMed PMID: 17030754. Epub 2006/10/13. eng.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Gruenewald TL, Karlamangla AS, Hu P, Stein-Merkin S, Crandall C, Koretz B, et al. History of socioeconomic disadvantage and allostatic load in later life. Soc Sci Med. 2012;74(1):75–83. PubMed PMID: 22115943, Pubmed Central PMCID: 3264490. Epub 2011/11/26. eng.

    PubMed  Article  Google Scholar 

  17. 17.

    Mirescu C, Peters JD, Gould E. Early life experience alters response of adult neurogenesis to stress. Nat Neurosci. 2004;7(8):841–6.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Bauer PM, Hanson JL, Pierson RK, Davidson RJ, Pollak SD. Cerebellar volume and cognitive functioning in children who experienced early deprivation. Biol Psychiatry. 2009;66(12):1100–6.

    PubMed  Article  Google Scholar 

  19. 19.

    Velupillai YN, Packard CJ, Batty GD, Bezlyak V, Burns H, Cavanagh J, et al. Psychological, social and biological determinants of ill health (pSoBid): study protocol of a population-based study. BMC Publ Health. 2008;8:126. PubMed PMID: 18426568. Pubmed Central PMCID: 2386810. Epub 2008/04/23. eng.

    Article  Google Scholar 

  20. 20.

    Deans KA, Bezlyak V, Ford I, Batty GD, Burns H, Cavanagh J, et al. Differences in atherosclerosis according to area level socioeconomic deprivation: cross sectional, population based study. BMJ. 2009;339:b4170. PubMed PMID: 19861369. Pubmed Central PMCID: 2768777. Epub 2009/10/29. eng.

    PubMed  Article  Google Scholar 

  21. 21.

    Shiels PG, McGlynn LM, Macintyre A, Johnson PC, Batty GD, Burns H, et al. Accelerated telomere attrition is associated with relative household income, diet and inflammation in the pSoBid cohort. PLoS One. 2011;6(7):e22521. PubMed PMID: 21818333. Pubmed Central PMCID: 3144896. Epub 2011/08/06. eng.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Packard CJ, Bezlyak V, McLean JS, Batty GD, Ford I, Burns H, et al. Early life socioeconomic adversity is associated in adult life with chronic inflammation, carotid atherosclerosis, poorer lung function and decreased cognitive performance: a cross-sectional, population-based study. BMC Public Health. 2011. doi:10.1186/1471-2458-11-42.

    PubMed  Google Scholar 

  23. 23.

    Greenacre MJ. Theory and application of correspondence analysis. London: Academic; 1984.

    Google Scholar 

  24. 24.

    Sapolsky RM. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry. 2000;57(10):925–35. PubMed PMID: 11015810. Epub 2000/10/04. eng.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Trenerry M, Crosson B, DeBoe J, Leber W. Stroop Neuropsychological Screening Test. Odessa: Psychological Assessment Resources; 1989.

    Google Scholar 

  26. 26.

    Reitan R, Wolfson D. Category test and trail making test as measures of frontal lobe functions. Clin Neuropsychol. 1995;9:50–6.

    Article  Google Scholar 

  27. 27.

    Deary IJ, Johnson W, Starr JM. Are processing speed tasks biomarkers of cognitive aging? Psychol Aging. 2010;25(1):219–28. PubMed PMID: 20230141. Epub 2010/03/17. eng.

    PubMed  Article  Google Scholar 

  28. 28.

    Spreen O, Strauss E. A compendium of neuropsychological tests: administration, norms, and commentary. 2nd ed. Oxford: Oxford University Press; 1998.

    Google Scholar 

  29. 29.

    Crawford JR, Deary IJ, Starr J, Whalley LJ. The NART as an index of prior intellectual functioning: a retrospective validity study covering a 66-year interval. Psychol Med. 2001;31(3):451–8. PubMed PMID: 11305853. Epub 2001/04/18. eng.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Goldberg DP, Gater R, Sartorius N, Ustun TB, Piccinelli M, Gureje O, et al. The validity of two versions of the GHQ in the WHO study of mental illness in general health care. Psychol Med. 1997;27(1):191–7. PubMed PMID: 9122299. Epub 1997/01/01. eng.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33(3):341–55. PubMed PMID: 11832223.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH, et al. Automatically parcellating the human cerebral cortex. Cereb Cortex. 2004;14(1):11–22. PubMed PMID: 14654453.

    PubMed  Article  Google Scholar 

  33. 33.

    Gromping U. Relative importance for linear regression in R: the package relaimpo. J Stat Soft. 2007;17(1):1–27.

    Google Scholar 

  34. 34.

    Lindeman RH, Merenda PF, Gold RZ. Introduction to bivariate and multivariate analysis. Glenview, Ill. London: Scott; 1980.

    Google Scholar 

  35. 35.

    Preacher KJ, Hayes AF. Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav Res Methods. 2008;40(3):879–91. PubMed PMID: 18697684. Epub 2008/08/14. eng.

    PubMed  Article  Google Scholar 

  36. 36.

    Chittleborough CR, Baum FE, Taylor AW, Hiller JE. A life-course approach to measuring socioeconomic position in population health surveillance systems. J Epidemiol Community Health. 2006;60(11):981–92.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Verbitskaya L. Some aspects of the onto-phylogenesis of the cerebellum. In: Llinas R, editor. Neurobiology of cerebellum evolution and development. Chicago: AMA; 1969. p. 859–79.

    Google Scholar 

  38. 38.

    Pintado C, Gavilan MP, Gavilan E, Garcia-Cuervo L, Gutierrez A, Vitorica J, et al. Lipopolysaccharide-induced neuroinflammation leads to the accumulation of ubiquitinated proteins and increases susceptibility to neurodegeneration induced by proteasome inhibition in rat hippocampus. J Neuroinflammation. 2012;9(1):87. PubMed PMID: 22559833. Pubmed Central PMCID: 3462674.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Das S, Basu A. Inflammation: a new candidate in modulating adult neurogenesis. J Neurosci Res. 2008;86(6):1199–208. PubMed PMID: 18058947.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Krishnadas R, Cavanagh J. Depression: an inflammatory illness? J Neurol Neurosurg Psychiatry. 2012;83(5):495–502. PubMed PMID: 22423117.

    PubMed  Article  Google Scholar 

  41. 41.

    Herzog RI, Chan O, Yu S, Dziura J, McNay EC, Sherwin RS. Effect of acute and recurrent hypoglycemia on changes in brain glycogen concentration. Endocrinology. 2008;149(4):1499–504. PubMed PMID: 18187548. Pubmed Central PMCID: 2276713. Epub 2008/01/12. eng.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Hoogendam YY, van der Geest JN, van der Lijn F, van der Lugt A, Niessen WJ, Krestin GP, et al. Determinants of cerebellar and cerebral volume in the general elderly population. Neurobiol Aging. 2012;33(12):2774–81. PubMed PMID: 22405042. Epub 2012/03/13. eng.

    PubMed  Article  Google Scholar 

  43. 43.

    Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9(4):304–13. PubMed PMID: 18319727. Epub 2008/03/06. eng.

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Taber KH, Strick PL, Hurley RA. Rabies and the cerebellum: new methods for tracing circuits in the brain. J Neuropsychiatry Clin Neurosci. 2005;17(2):133–9. PubMed PMID: 15939965. Epub 2005/06/09. eng.

    PubMed  Article  Google Scholar 

  45. 45.

    Rogers TD, Dickson PE, Heck DH, Goldowitz D, Mittleman G, Blaha CD. Connecting the dots of the cerebro-cerebellar role in cognitive function: neuronal pathways for cerebellar modulation of dopamine release in the prefrontal cortex. Synapse. 2011;65(11):1204–12.

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44(2):489–501. PubMed PMID: 18835452. Epub 2008/10/07. eng.

    PubMed  Article  Google Scholar 

  47. 47.

    MacLullich AM, Edmond CL, Ferguson KJ, Wardlaw JM, Starr JM, Seckl JR, et al. Size of the neocerebellar vermis is associated with cognition in healthy elderly men. Brain Cogn. 2004;56(3):344–8. PubMed PMID: 15522773. Epub 2004/11/04. eng.

    PubMed  Article  Google Scholar 

  48. 48.

    Hogan MJ, Staff RT, Bunting BP, Murray AD, Ahearn TS, Deary IJ, et al. Cerebellar brain volume accounts for variance in cognitive performance in older adults. Cortex. 2011;47(4):441–50. PubMed PMID: 20167312. Epub 2010/02/20. eng.

    PubMed  Article  Google Scholar 

  49. 49.

    Xu J, Kobayashi S, Yamaguchi S, Iijima K, Okada K, Yamashita K. Gender effects on age-related changes in brain structure. AJNR Am J Neuroradiol. 2000;21(1):112–8. PubMed PMID: 10669234. Epub 2000/02/11. eng.

    PubMed  CAS  Google Scholar 

  50. 50.

    McEwen BS, Gianaros PJ. Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Ann N Y Acad Sci. 2010;1186(1):190–222.

    PubMed  Article  Google Scholar 

  51. 51.

    Miller GA, Chapman JP. Misunderstanding analysis of covariance. J Abnorm Psychol. 2001;110(1):40–8. PubMed PMID: 11261398.

    PubMed  Article  CAS  Google Scholar 

Download references


We thank Dr Mortimer and Theresa Sackler Foundation for their support. This work was funded by the Glasgow Centre for Population Health, a partnership between NHS Greater Glasgow and Clyde, Glasgow City Council and the University of Glasgow, supported by the Scottish Government. The Glasgow Centre for Population Health had a role in study design, data collection and analysis, decision to publish and the preparation of the manuscript.

Author information



Corresponding author

Correspondence to Jonathan Cavanagh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cavanagh, J., Krishnadas, R., Batty, G.D. et al. Socioeconomic Status and the Cerebellar Grey Matter Volume. Data from a Well-Characterised Population Sample. Cerebellum 12, 882–891 (2013).

Download citation


  • Cerebellum
  • Socioeconomic status
  • Deprivation
  • Cognition