Skip to main content

Advertisement

Log in

Gene Expression Profiling Reveals Regulation of ERK Phosphorylation by Androgen-Induced Tumor Suppressor U19/EAF2 in the Mouse Prostate

  • Original Paper
  • Published:
Cancer Microenvironment

Abstract

U19/EAF2 is regulated by androgens in the prostate and capable of regulating transcriptional elongation of RNA Pol II via interaction with the ELL family proteins. Inactivation of U19/EAF2 induces tumorigenesis in multiple organs; however the mechanism of U19/EAF2 tumor suppression remains unclear. To elucidate potential mechanisms of U19/EAF2 action, we performed cDNA microarray analysis and identified 164 mRNA transcripts regulated by U19/EAF2 in the mouse ventral prostate. Bioinformatics analysis indicated that U19/EAF2 knockout activates the RAS-BRAF-ERK signaling pathway, which is known to play important roles in carcinogenesis. qPCR verified increased expression of BRAF mRNA, and immunostaining and Western blot analysis demonstrated increased expression of p-ERK at the protein level suggested U19/EAF2 knockout activates this important pathway. These findings indicate that loss of EAF2 up-regulates transcription of RAS cascade genes including Grb2, PI3K, and BRAF, leading to elevated p-ERK levels, which may represent a major functional role of U19/EAF2 in the prostate. Furthermore, these observations suggest that U19/EAF2 is a key player in crosstalk between androgen receptor and the RAS-BRAF-ERK signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kozlowski JM, Ellis WJ, Grayhack JT (1991) Advanced prostatic carcinoma. Early versus late endocrine therapy. Urol Clin N Am 18(1):15–24

    CAS  Google Scholar 

  2. Montie J, Pienta K (1994) Review of the role of androgenic hormones in the epidemiology of benign prostatic hyperplasia and prostate cancer. [Review]. Urology 43(6):892–899

    Article  PubMed  CAS  Google Scholar 

  3. O’Leary MP, Roehrborn CG, Black L (2007) Dutasteride significantly improves quality of life measures in patients with enlarged prostate. Prostate Cancer Prostatic Dis

  4. Griffiths K, Eaton C, Harper M, Peeling B, Davies P (1991) Steroid hormones and the pathogenesis of benign prostatic hyperplasia. [Review]. Eur Urol 20(Suppl 1):68–77

    PubMed  Google Scholar 

  5. Zhou Z, Wong C, Sar M, Wilson E (1994) The androgen receptor: an overview. [Review]. Recent Prog Horm Res 49:249–274

    PubMed  CAS  Google Scholar 

  6. Wang Z, Tufts R, Haleem R, Cai X (1997) Genes regulated by androgen in the rat ventral prostate. Proc Natl Acad Sci USA 94:12999–13004

    Article  PubMed  CAS  Google Scholar 

  7. Zhu ML, Kyprianou N (2008) Androgen receptor and growth factor signaling cross-talk in prostate cancer cells. Endocr Relat Cancer 15(4):841–849

    Article  PubMed  CAS  Google Scholar 

  8. Culig Z (2004) Androgen receptor cross-talk with cell signalling pathways. Growth Factors 22(3):179–184

    Article  PubMed  CAS  Google Scholar 

  9. Maurer G, Tarkowski B, Baccarini M (2011) Raf kinases in cancer-roles and therapeutic opportunities. Oncogene 30(32):3477–3488

    Article  PubMed  CAS  Google Scholar 

  10. Marais R, Light Y, Paterson HF, Mason CS, Marshall CJ (1997) Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases. J Biol Chem 272(7):4378–4383

    Article  PubMed  CAS  Google Scholar 

  11. Niihori T, Aoki Y, Narumi Y, Neri G, Cave H, Verloes A, Okamoto N, Hennekam RC, Gillessen-Kaesbach G, Wieczorek D et al (2006) Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Nat Genet 38(3):294–296

    Article  PubMed  CAS  Google Scholar 

  12. Tabernero J, Dienstmann R (2011) BRAF as a target for cancer therapy. Anti-Cancer Agent Me 11(3):285–295

    Article  Google Scholar 

  13. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W et al (2002) Mutations of the BRAF gene in human cancer. Nature 417(6892):949–954

    Article  PubMed  CAS  Google Scholar 

  14. Halilovic E, Solit DB (2008) Therapeutic strategies for inhibiting oncogenic BRAF signaling. Curr Opin Pharmacol 8(4):419–426

    Article  PubMed  CAS  Google Scholar 

  15. Pratilas CA, Xing F, Solit DB (2011) Targeting oncogenic BRAF in human cancer. Curr Top Microbiol Immunol

  16. Ball DW, Jin N, Rosen DM, Dackiw A, Sidransky D, Xing M, Nelkin BD (2007) Selective growth inhibition in BRAF mutant thyroid cancer by the mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244. J Clin Endocrinol Metab 92(12):4712–4718

    Article  PubMed  CAS  Google Scholar 

  17. Gioeli D, Mandell JW, Petroni GR, Frierson HF Jr, Weber MJ (1999) Activation of mitogen-activated protein kinase associated with prostate cancer progression. Cancer Res 59(2):279–284

    PubMed  CAS  Google Scholar 

  18. Gioeli D (2005) Signal transduction in prostate cancer progression. Clin Sci (Lond) 108(4):293–308

    Article  CAS  Google Scholar 

  19. Garraway LA, Thomas RK, Baker AC, DeBiasi RM, Winckler W, LaFramboise T, Lin WM, Wang M, Feng W, Zander T et al (2007) High-throughput oncogene mutation profiling in human cancer. Nat Genet 39(3):347–351

    Article  PubMed  Google Scholar 

  20. Barford D, Wan PTC, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, Jones CM, Marshall CJ, Springer CJ et al (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116(6):855–867

    Article  PubMed  Google Scholar 

  21. Dahut WL, Scripture C, Posadas E, Jain L, Gulley JL, Arlen PM, Wright JJ, Yu Y, Cao L, Steinberg SM et al (2008) A phase II clinical trial of sorafenib in androgen-independent prostate cancer. Clin Cancer Res 14(1):209–214

    Article  PubMed  CAS  Google Scholar 

  22. Xiao W, Zhang Q, Jiang F, Pins M, Kozlowski JM, Wang Z (2003) Suppression of prostate tumor growth by U19, a novel testosterone-regulated apoptosis inducer. Cancer Res 63(15):4698–4704

    PubMed  CAS  Google Scholar 

  23. Simone F, Luo RT, Polak PE, Kaberlein JJ, Thirman MJ (2003) ELL-associated factor 2 (EAF2), a functional homolog of EAF1 with alternative ELL binding properties. Blood 101(6):2355–2362

    Article  PubMed  CAS  Google Scholar 

  24. Xiao W, Jiang F, Wang Z (2006) ELL binding regulates U19/Eaf2 intracellular localization, stability, and transactivation. Prostate 66(1):1–12

    Article  PubMed  CAS  Google Scholar 

  25. Shilatifard A, Duan DR, Haque D, Florence C, Schubach WH, Conaway JW, Conaway RC (1997) ELL2, a new member of an ELL family of RNA polymerase II elongation factors. Proc Natl Acad Sci U S A 94(8):3639–3643

    Article  PubMed  CAS  Google Scholar 

  26. Xiao W, Zhang Q, Habermacher G, Yang X, Zhang AY, Cai X, Hahn J, Liu J, Pins M, Doglio L et al (2008) U19/Eaf2 knockout causes lung adenocarcinoma, B-cell lymphoma, hepatocellular carcinoma and prostatic intraepithelial neoplasia. Oncogene 27(11):1536–1544

    Article  PubMed  CAS  Google Scholar 

  27. Cortez DA, Tonon AP, Colepicolo P, Vencio RZ (2011) Combining P values to improve classification of differential gene expression in the HTself software. Genetics and Molecular Research: GMR 10(4):3586–3595

    Article  PubMed  CAS  Google Scholar 

  28. Pascal LE, Vencio RZ, Page LS, Liebeskind ES, Shadle CP, Troisch P, Marzolf B, True LD, Hood LE, Liu AY (2009) Gene expression relationship between prostate cancer cells of Gleason 3, 4 and normal epithelial cells as revealed by cell type-specific transcriptomes. BMC Cancer 9:452

    Article  PubMed  Google Scholar 

  29. Pascal LE, Goo YA, Vencio RZ, Page LS, Chambers AA, Liebeskind ES, Takayama TK, True LD, Liu AY (2009) Gene expression down-regulation in CD90+ prostate tumor-associated stromal cells involves potential organ-specific genes. BMC Cancer 9:317

    Article  PubMed  Google Scholar 

  30. Pascal LE, Vencio RZ, Vessella RL, Ware CB, Vencio EF, Denyer G, Liu AY (2011) Lineage relationship of prostate cancer cell types based on gene expression. BMC Medical Genomics 4:46

    Article  PubMed  Google Scholar 

  31. da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57

    Article  CAS  Google Scholar 

  32. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol 4(5):P3

    Article  PubMed  Google Scholar 

  33. Ai J, Wang Y, Dar JA, Liu J, Liu L, Nelson JB, Wang Z (2009) HDAC6 regulates androgen receptor hypersensitivity and nuclear localization via modulating Hsp90 acetylation in castration-resistant prostate cancer. Mol Endocrinol 23(12):1963–1972

    Article  PubMed  CAS  Google Scholar 

  34. Shi Q, Pavey ES, Carter RE (2012) Bonferroni-based correction factor for multiple, correlated endpoints. Pharm Stat 11(4):300–309

    Article  PubMed  Google Scholar 

  35. Bridges LC, Tani PH, Hanson KR, Roberts CM, Judkins MB, Bowditch RD (2002) The lymphocyte metalloprotease MDC-L (ADAM 28) is a ligand for the integrin alpha4beta1. J Biol Chem 277(5):3784–3792

    Article  PubMed  CAS  Google Scholar 

  36. Crawford NP, Alsarraj J, Lukes L, Walker RC, Officewala JS, Yang HH, Lee MP, Ozato K, Hunter KW (2008) Bromodomain 4 activation predicts breast cancer survival. Proc Natl Acad Sci U S A 105(17):6380–6385

    Article  PubMed  CAS  Google Scholar 

  37. Busch C, Hanssen TA, Wagener C (2002) B OB: Down-regulation of CEACAM1 in human prostate cancer: correlation with loss of cell polarity, increased proliferation rate, and Gleason grade 3 to 4 transition. Hum Pathol 33(3):290–298

    Article  PubMed  CAS  Google Scholar 

  38. van der Rest M, Garrone R (1991) Collagen family of proteins. FASEB J: Off Publ Fed Am Soc Exp Biol 5(13):2814–2823

    Google Scholar 

  39. Hu H, Bliss JM, Wang Y, Colicelli J (2005) RIN1 is an ABL tyrosine kinase activator and a regulator of epithelial-cell adhesion and migration. Current biology: CB 15(9):815–823

    Article  PubMed  CAS  Google Scholar 

  40. Lewis TS, Shapiro PS, Ahn NG (1998) Signal transduction through MAP kinase cascades. Adv Cancer Res 74:49–139

    Article  PubMed  CAS  Google Scholar 

  41. Cobb MH, Goldsmith EJ (1995) How map kinases are regulated. J Biol Chem 270(25):14843–14846

    Article  PubMed  CAS  Google Scholar 

  42. Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5(5):341–354

    Article  PubMed  CAS  Google Scholar 

  43. Allen LF, Sebolt-Leopold J, Meyer MB (2003) Cl-1040 (PD184352), a targeted signal transduction inhibitor of MEK (MAPKK). Semin Oncol 30(5):105–116

    Article  PubMed  CAS  Google Scholar 

  44. Pratilas CA, Taylor BS, Ye Q, Viale A, Sander C, Solit DB, Rosen N (2009) (V600E)BRAF is associated with disabled feedback inhibition of RAF-MEK signaling and elevated transcriptional output of the pathway. Proc Natl Acad Sci U S A 106(11):4519–4524

    Article  PubMed  CAS  Google Scholar 

  45. Bruchovsky N, Lesser B, Doorn EV, Craven S (1975) Hormonal effects on cell proliferation in rat prostate. Vitam Horm 33:61–102

    Article  PubMed  CAS  Google Scholar 

  46. Isaacs J, Furuya Y, Berges R (1994) The role of androgen in the regulation of programmed cell death/apoptosis in normal and malignant prostatic tissue. [Review]. Sem Cancer Biol 5(5):391–400

    CAS  Google Scholar 

  47. Su F, Pascal LE, Xiao W, Wang Z (2010) Tumor suppressor U19/EAF2 regulates thrombospondin-1 expression via p53. Oncogene 29(3):421–431

    Article  PubMed  CAS  Google Scholar 

  48. Colombel M, Filleur S, Fournier P, Merle C, Guglielmi J, Courtin A, Degeorges A, Serre CM, Bouvier R, Clezardin P et al (2005) Androgens repress the expression of the angiogenesis inhibitor thrombospondin-1 in normal and neoplastic prostate. Cancer Res 65(1):300–308

    PubMed  CAS  Google Scholar 

  49. Fontana A, Filleur S, Guglielmi J, Frappart L, Bruno-Bossio G, Boissier S, Cabon F, Clezardin P (2005) Human breast tumors override the antiangiogenic effect of stromal thrombospondin-1 in vivo. Int J Cancer J Int Du Cancer 116(5):686–691

    Article  CAS  Google Scholar 

  50. Kwak C, Jin RJ, Lee C, Park MS, Lee SE (2002) Thrombospondin-1, vascular endothelial growth factor expression and their relationship with p53 status in prostate cancer and benign prostatic hyperplasia. BJU Int 89(3):303–309

    Article  PubMed  CAS  Google Scholar 

  51. Pascal LE, Ai J, Rigatti LH, Lipton AK, Xiao W, Gnarra JR, Wang Z (2011) EAF2 loss enhances angiogenic effects of Von Hippel-Lindau heterozygosity on the murine liver and prostate. Angiogenesis 14(3):331–343

    Article  PubMed  CAS  Google Scholar 

  52. Xiao W, Ai J, Habermacher G, Volpert O, Yang X, Zhang AY, Hahn J, Cai X, Wang Z (2009) U19/Eaf2 binds to and stabilizes von hippel-lindau protein. Cancer Res 69(6):2599–2606

    Article  PubMed  CAS  Google Scholar 

  53. Jiang M, Ma Y, Chen C, Fu X, Yang S, Li X, Yu G, Mao Y, Xie Y, Li Y (2009) Androgen-responsive gene database: integrated knowledge on androgen-responsive genes. Mol Endocrinol 23(11):1927–1933

    Article  PubMed  CAS  Google Scholar 

  54. Long RM, Morrissey C, Walsh S, Hamilton HJ, Farrell N, O’Neill A, Fitzpatrick JM, Watson WR (2007) Alterations in the expression of inhibitors of apoptosis during differentiation of prostate epithelial cells. BJU Int 100(2):445–449

    Article  PubMed  CAS  Google Scholar 

  55. Doane AS, Danso M, Lal P, Donaton M, Zhang L, Hudis C, Gerald WL (2006) An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen. Oncogene 25(28):3994–4008

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported in part by National Institutes of Health Grants R37 DK51193, R01 CA 108675, and P50 CA90386 and the Tippins Foundation (LEP). This project used the UPCI Animal Facility and was supported in part by award P30CA047904. We also thank Junkui Ai and Liquan Cai for critical reading.

Disclosure Summary

The authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Additional File 1

Functional categories enriched in differentially expressed genes in U19/EAF2 knockout ventral prostate. (XLS 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, F., Correa, B.R.S., Luo, J. et al. Gene Expression Profiling Reveals Regulation of ERK Phosphorylation by Androgen-Induced Tumor Suppressor U19/EAF2 in the Mouse Prostate. Cancer Microenvironment 6, 247–261 (2013). https://doi.org/10.1007/s12307-013-0132-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-013-0132-4

Keywords

Navigation