Scheelite geochemistry of the Sangdong W-Mo deposit and W prospects in the southern Taebaeksan metallogenic region, Korea

Abstract

We compare the trace element geochemistry of scheelite from the economic Sangdong W-Mo deposit with scheelite from unmineralized or sub-economic prospects in Joongdong and Sangdong area in the southern Taebaeksan metallogenic region, to investigate the ore-forming processes controlling scheelite mineralization and to provide a geochemical model for W exploration. In the Sangdong W-Mo deposit, the Mo substitution into scheelite as a powellite (CaMoO4) component changed colors of scheelite fluorescence under short-wavelength UV from yellow (Mo up to 51,000 µg/g) to blue (Mo up to 3.2 µg/g). Low-Mo scheelite with blue fluorescence occurred in the low-grade periphery of the Sangdong deposit and contained higher concentrations of Sr, possibly indicating a lower degree of fluid-rock interaction of the scheelite-forming fluid with Sr-bearing host. Mo-rich scheelite with yellow fluorescence accumulated in the W-rich center of the Sangdong deposit. Hence, the fluorescence color of scheelite reflected both the fluids oxidation state and the degree of fluid-rock interaction and might be useful for scheelite exploration in the Taebaeksan region. In the Sangdong deposit, Nb concentrations in scheelite were high and negatively correlated with its Eu anomaly values, suggesting extensive batholith-scale fractionation in a large magmatic reservoir. Conversely, much lower Nb concentrations of scheelite in the Joondong area suggests a relatively small or isolated magma reservoir that did not reach the same degree of fractionation at the point of fluid saturation, which would limit the potential for an economic scheelite mineralization. Scheelite Nb/ Ta ratio is found to effectively differentiate economic orebodies and subeconomic prospects in the Taebaeksan metallogenic region and might be a useful parameter for scheelite exploration.

This is a preview of subscription content, log in to check access.

References

  1. Anders, E. and Grevesse, N., 1989, Abundances of the elements: meteoritic and solar. Geochimica et Cosmochimica Acta, 53, 197–214.

    Article  Google Scholar 

  2. Audétat, A., 2010, Source and evolution of molybdenum in the porphyry Mo(-Nb) deposit at Cave Peak, Texas. Journal of Petrology, 51, 1739–1760.

    Article  Google Scholar 

  3. Audétat, A. and Pettke, T., 2003, The magmatic-hydrothermal evolution of two barren granites: a melt and fluid inclusion study of the Rito del Medio and Canada Pinabete plutons in northern New Mexico (USA). Geochimica et Cosmochimica Acta, 67, 97–121.

    Article  Google Scholar 

  4. Audétat, A., Günther, D., and Heinrich, C.A., 2000, Causes for large-scale metal zonation around mineralized plutons: fluid inclusion LA-ICP-MS evidence from the Mole Granite, Australia. Economic Geology, 95, 1563–1581.

    Article  Google Scholar 

  5. Audétat, A., Pettke, T., Heinrich, C.A., and Bodnar, R.J., 2008, The composition of magmatic-hydrothermal fluids in barren and mineralized intrusions. Economic Geology, 103, 877–908.

    Article  Google Scholar 

  6. Ayers, J.C., Watson, E.B., Tarney, J., Pickering, K.T., Knipe, R.J., and Dewey, J.F., 1991, Solubility of apatite, monazite, zircon, and rutile in supercritical aqueous fluids with implications for subduction zone geochemistry. Philosophical Transactions of the Royal Society of London, Series A: Physical and Engineering Sciences, 335, 365–375.

    Article  Google Scholar 

  7. Barton, M.D., 1987, Lithophile-element mineralization associated with Late Cretaceous two-mica granites in the Great Basin. Geology, 15, 337–340.

    Article  Google Scholar 

  8. Brugger, J., Lahaye, Y., Costa, S., Lambert, D., and Bateman, R., 2000, Inhomogeneous distribution of REE in scheelite and dynamics of Archaean hydrothermal systems (Mt. Charlotte and Drysdal gold deposits, Western Australia). Contributions to Mineralogy and Petrology, 139, 251–264.

    Article  Google Scholar 

  9. Brugger, J., Etschmann, B., Pownceby, M., Liu, W., Grundler, P., and Brewe, D., 2008, Oxidation state of europium in scheelite: tracking fluid-rock interaction in gold deposit. Chemical Geology, 257, 26–33.

    Article  Google Scholar 

  10. Chang, H.W., Lee, M.S., and Cho, D.J., 1990, Comparison of geocehmical characteristics of the Shinyemi granite and the Imog granite, northeastern part of South Korea. Journal of the Geological Society of Korea, 4, 313–323.

    Google Scholar 

  11. Chang, H.W., Cheong, C.S., Park, H.I., and Chang, B.U., 1995, Lead isotopic study on the Dongnam Fe-Mo skarn deposit. Economic and Environmental Geology, 28, 25–31.

    Google Scholar 

  12. Chi, S.J., 2011, Evaluation of development possibility for the security of industrial mineral resources (Cu, Pb, Zn, Au etc) on the domestic mines. Report GP2010-024-2011(2), Korea Institute of Geoscience and Mineral Resource (KIGAM), Daejeon, 351 p.

    Google Scholar 

  13. Choi, D.K., 1998, The Yongwol Group (Cambrian-Ordovician) redefined: a proposal for the stratigraphic nomenclature of the Choson Supergroup. Geosciences Journal, 2, 220–234.

    Article  Google Scholar 

  14. Choi, E., Choi, S.G., Seo, J., Kim, C.S., and Park, S.G., 2014, Geology, mineralogy and geochemistry of the Shinyemi iron deposit, Korea: implications for a genetic model. Acta Geologica Sinica, 88, 1083–1084.

    Article  Google Scholar 

  15. Choi, S.G., Choi, B.K., Ahn, Y.H., and Kim, T.H., 2009, Re-evaluation of genetic environments of zinc-lead deposits to predict hidden skarn orebody. Economic and Environmental Geology, 42, 301–314.

    Google Scholar 

  16. Ding, T., Ma, D., Lu, J., and Zhang, R., 2018, Garnet and scheelite as indicators of multi-stage tungsten mineralization in the Huangshaping deposit, southern Hunan province, China. Ore Geology Reviews, 94, 193–211.

    Article  Google Scholar 

  17. Dostal, J., Kontak, D.J., and Chatterjee, A.K., 2009, Trace elements geochemistry of scheelite and rutile from metaturbidite-hosted quartz vein gold deposits, Meguma Terrane, Nova Scotia, Canada: geneti implications. Mineralogy and Petrology, 97, 95–109.

    Article  Google Scholar 

  18. Farrar, E., Clark, A.H., and Kim, O.J., 1978, Age of the Sangdong tungsten deposit, Republic of Korea, and its bearing on the metallogeny of the Southern Korean Peninsula. Economic Geology, 73, 547–552.

    Article  Google Scholar 

  19. Fu, Y., Sun, X., Zou, H., Lin, H., Jiang, L., and Yang, T., 2017, In-situ LA-ICP-MS trace elements analysis of scheelites from the giant Beiya gold-polymetallic deposit in Yunnan Province, Southwest China and its metallogenic implications. Ore Geology Reviews, 80, 828–837.

    Article  Google Scholar 

  20. Gaudette, H.E. and Hurley, P.M., 1973, U-Pb zircon age of Precambrian basement gneiss of South Korea. Geological Society of America Bulletin, 84, 2305–2506.

    Article  Google Scholar 

  21. Ghaderi, M., Michael Palin, J., Campbell, I.H., and Sylvester, P.J., 1999, Rare earth element systematics in scheelite from hydrothermla gold deposits in the Kalgoorlie-Norseman region, Western Australia. Economic Geology, 94, 423–438.

    Article  Google Scholar 

  22. Gliddon, J., Gribble, P., Carter, A., Elvish, R., Thomas, P., Turner, M., Liukko, G., Jansons, K., and Wrigley, T., 2012, Sangdong project feasibility study. Report, Document No. 1053410100-REP-R0002-01, Wardrop, Swindon, UK, 230 p. https://secure.kaiserresearch.com/i/jk/tr16/TRWOF20120602.pdf

    Google Scholar 

  23. Go, G.H., 1986, Study on mineralization and skarn minerals of the Sangdong tungsten deposit. MSc. Thesis, Ewah Womans University, Seoul, Korea, 50 p. http://dspace.ewha.ac.kr/handle/2015.oak/196790

    Google Scholar 

  24. Greenwood, R., 1943, Effect of chemical impurities on scheelite fluorescence. Economic Geology, 38, 56–64.

    Article  Google Scholar 

  25. Guillong, M., Meier, D.L., Allan, M.M., Heinrich, C.A., and Yardley, B.W.D., 2008, SILLS: a MATLAB-based program for the reduction of laser abalation ICP-MS data of homogeneous materials and inclusions. In: Sylvester, P. (ed.), Laser Ablation ICP–MS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada Short Course, Québec, 40, p. 328–333.

    Google Scholar 

  26. Guo, S., Chen, Y., Liu, C.Z., Wang, J.G., Su, B., Gao, Y.J., Wu, F.Y., Sein, K., Yang, Y.H., and Mao, Q., 2016, Scheelite and coexisting F-rich zoned garnet, vesuvianitem fluoritem and apatite in calc-silicate rocks from the Mogok metamorphic best, Myanmar: implications for metasomatism in marble and the role of halogens in W mobilization and mineralization. Journal of Asian Earth Sciences, 117, 82–106.

    Article  Google Scholar 

  27. Haas, J.R., Shock, E.L., and Sassani, D.C., 1995, Rare earth elements in hydrothermal systems: estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures. Geochimica et Cosmochimica Acta, 59, 4329–4350.

    Article  Google Scholar 

  28. Hong, Y.K., 1986, Geochemistry and K-Ar age of the Imog granite at the southwestern part of the Hambaeg basin, Korea. Economic and Environmental Geology, 19, 07–107.

    Google Scholar 

  29. Horng, W.S. and Hess, P.C., 2000, Partition coefficients of Nb and Ta between rutile and anhydrous haplogranite melts. Contributions to Mineralogy and Petrology, 138, 176–185.

    Article  Google Scholar 

  30. Hsu, L.C. and Galli, P.E., 1973, Origin of the scheelite-powellite series of minerals. Economic Geology, 68, 681–696.

    Article  Google Scholar 

  31. Huang, L.C. and Jiang, S.Y., 2014, Highly fractionated S-type granites from the giant Dahutang tungsten deposit in Jiangnan Orogen, Southest China: geochronology, petrogenesis and their relationship with W-mineralization. Lithos, 202–203, 207–226.

    Article  Google Scholar 

  32. Hwang, D.H. and Lee, J.Y., 1998, Ore genesis of the Wondong polymetallic mineral deposits in the Taebaegsan metallogenic province. Economic and Environmental Geology, 31, 375–388.

    Google Scholar 

  33. Im, H. and Shin, D., 2016, Mineral composition and genetic environmental of skarn and hydrothermal vein type ore bodies in Imog deposit. Proceedings of the Fall Joint Conference of the Geological Science in Korea, Pyeongchang, Korea, Oct. 24–27, p. 226.

  34. John, Y.W., 1963, Geology and origin of Sandong tungsten mine, Republic of Korea. Economic Geology, 58, 1285–1300.

    Article  Google Scholar 

  35. Kim, C.S., Choi, S.G., Kim, G.B., Kang, J., Kim, K.B., Kim, H., Lee, J., and Ryu, I.C., 2017, Genetic environments of the high-purity limestone in the upper zone of the Daegi Formation at the Jeongseon-Samcheok area. Economic and Environmental Geology, 50, 287–302.

    Google Scholar 

  36. Kim, E.J., Park, M.E., and White, N.C., 2012, Skarn gold mineralization at the Geodo mine, South Korea. Economic Geology, 107, 537–551.

    Article  Google Scholar 

  37. Kim, J.H. and Lee, K.M., 2000, Report of detailed survey: limestone, the Jeongseon-Yemi area. Report, Korea Mineral Resource Corporation (KORES), Seoul, 73 p.

    Google Scholar 

  38. Kim, K., 1986, Petrology and petrochemistry of Sangdong granite. M.Sc. Thesis, Kyungpook National University, Daegu, Korea, 80 p.

    Google Scholar 

  39. Kim, K.H. and Nakai, N., 1982, Sulfur isotope composition and isotopic temperatures of the Shinyemi lead and zinc ore deposits, western Taebaegsan Metallogenic Belt, Korea. Economic and Environmental Geology, 15, 156–166.

    Google Scholar 

  40. Kim, K.H. and Shin, Y.H., 1995, Nd-Sr isotope and gas composition for the Sangdong Granites related to the tungsten-molybdenum ore mineraliztion. Economic and Environmental Geology, 28, 139–145.

    Google Scholar 

  41. Kim, K.H., Nakai, N., and Kim, O.J., 1981, A mineralogical study of the skarn minerals from the Shinyemi lead-zinc ore deposits, Korea. Economic and Environmental Geology, 14, 167–182.

    Google Scholar 

  42. Kim, K.H., Kim, O.J., Nakai, N., and Lee, H.J., 1988, Stable isotope studies of the Sangdong tungsten ore deposit, South Korea. Mining Geology, 38, 473–487. https://doi.org/10.11456/shigenchishitsu1951.38.473

    Google Scholar 

  43. Kim, O.J. and Kim, K.H., 1978, On the genesis of the ore deposits of Yemi district in the Taebaeksan Metallogenic Province. Journal of Natural Science Institute, Yonsei University, Seoul, 2, 71–94.

    Google Scholar 

  44. Klemm, L.M., Pettke, T., and Heinrich, C.A., 2008, Fluid and source magma evolution of the Questa porphyry Mo deposit, New Mexico, USA. Mineralium Deposita, 43, 533–552.

    Article  Google Scholar 

  45. Klemm, L.M., Pettke, T., Heinrich, C.A., and Campos, E., 2007, Hydrothermal evolution of the El Teniente deposit, Chile: porphyry Cu-Mo ore deposition from low-salinity magmatic fluids. Economic Geology, 102, 1021–1045.

    Article  Google Scholar 

  46. Koh, Y.K., Choi, S.G., So, C.S., Choi, S.H., and Uchida, E., 1992, Application of arsenopyrite geothermometry and sphalerite geobarometry to the Taebaek Pb-Zn(-Ag) deposit at Yeonhwa I mine, Republic of Korea. Mineralium Deposita, 27, 58–65.

    Article  Google Scholar 

  47. Larsen, L.M., 1979, Distribution of REE and other trace elements between phenocrysts and peralkaline undersaturated magmas, exemplified by rocks from the Gardar igneous province, south Greenland. Lithos, 12, 303–315.

    Article  Google Scholar 

  48. Lecumberri-Sanchez, P., Vieira, R., Heinrich, C.A., Pinto, F., and Walle, M., 2017, Fluid-rock interaction is decisive for the formation of tungsten deposit. Geology, 45, 579–582.

    Article  Google Scholar 

  49. Lee, C.H., Lee, H.K., and Kim, S.J., 1998, Geochemistry and mineralization age of magnesian skarn-type iron deposits of the Janggun mine, Republic of Korea. Mineralium Deposita, 33, 379–390.

    Article  Google Scholar 

  50. Lee, H.J., 2001, Report on Sangdong tungsten mine in Korea. Report, Korea Engineering Co. Ltd., Seoul, 45 p.

    Google Scholar 

  51. Lee, H.K., 2016, Lead isotopic compositions of sphalerite in the Taebaeksan region. Report, Korea Institute of Geoscience and Mineral Resource (KIGAM), Daejeon, 237 p.

    Google Scholar 

  52. Lee, H.K., Ko, S.J., and Imai, N., 1990, Genesis of the lead-zinc-silver and iron deposits of the Janggun mine, as related to their structural features: structural control and wallrock alteration of ore formation. Economic and Environmental Geology, 23, 161–181.

    Google Scholar 

  53. Lee, H.K., Lee, C.H., and Kim, S.J., 1996a, Geochemistry of stable isotope and mineralization age of magnetite deposits from the Janggun mine, Korea. Economic and Environmental Geology, 29, 411–419.

    Google Scholar 

  54. Lee, H.K., Moon, H.S., and Oh, M.S., 2007, Economic mineral deposits in Korea. ACANET, Seoul, 762 p.

    Google Scholar 

  55. Lee, J.H., 2018, Sphalerite geochemistry of Zn-Pb orebodies in the Taebaeksan metallogenic belt. M.Sc. Thesis, Inha University, Incheon, Korea, 88 p.

    Google Scholar 

  56. Lee, J.H., Yoo, B.C., Yang, Y., Lee, T.H., and Seo, J.H., 2019, Sphalerite geochemistry of the Zn-Pb orebodies in the Taebaeksan metallogenic province, Korea. Ore Geology Reviews, 107, 1046–1067.

    Article  Google Scholar 

  57. Lee, J.Y., Lee, I.H., and Hwang, D.H., 1996b, Chemical composition of the Cretaceous granitoids and related ore deposits in the Taebaegsan basin, Korea. Economic and Environmental Geology, 29, 247–256.

    Google Scholar 

  58. Lee, Y.I. and Lee, J.I., 2003, Paleozoic sedimentation and tectonics in Korea: a review. Island Arc, 12, 162–179.

    Article  Google Scholar 

  59. Migdisov, A.A., Williams-Jones, A.E., and Wagner, T., 2009, An experimental study of the solubility and speciation of the rare earth elements (III) in fluoride- and chloride-bearing aqueous solutions at temperatures up to 300 °C. Geochimica et Cosmochimica Acta, 73, 7087–7109.

    Article  Google Scholar 

  60. Moon, K.J., 1983, The genesis of the Sangdong tungsten deposit, the republic of Korea. Ph.D. Thesis, University of Tasmania, Australia, 366 p.

    Google Scholar 

  61. Moon, K.J., 1984a, Condition of the Sangdong tungsten skarn formation. Economic and Environmental Geology, 17, 259–272.

    Google Scholar 

  62. Moon, K.J., 1984b, Stable isotope study on the Sangdong deposit. Economic and Environmental Geology, 17, 171–177.

    Google Scholar 

  63. Moon, K.J., 1985, Fluid inclusion study of the Sangdong tungsten skarn deposits. Economic and Environmental Geology, 18, 205–216.

    Google Scholar 

  64. Moon, K.J., 1986, Comparison study of geochemistry of the Sangdong skarn orebody in a large scale and small scale. Economic and Environmental Geology, 19, 113–119.

    Google Scholar 

  65. Moon, K.J., 1987, Significance of the occurences of the Sangdong Granite and scheelite-bearing quartz veins in the Precambrian schist. Journal of the Geological Society of Korea, 23, 306–316.

    Google Scholar 

  66. Moon, K.J., 1989, REE patterns at the Sangdong tungsten skarn ore deposit, South Korea. Journal of the Geological Society of Korea, 25, 205–215.

    Google Scholar 

  67. Moon, K.J., 1991a, Review of skarn ore deposits at the southern limb of the Baegunsan syncline in the Taebaeg basin of South Korea. Journal of the Geological Society of Korea, 27, 271–292.

    Google Scholar 

  68. Moon, K.J., 1991b, Application of fluid inclusions in mineral exploration. Journal of Geochemical Exploration, 42, 205–221.

    Article  Google Scholar 

  69. Moon, K.J. and Lee, H.J., 1980, A study on the melybdenum in scheelite of Sangdong tungsten orebodies. Economic and Environmental Geology, 13, 117–127.

    Google Scholar 

  70. Newberry, R.J., 1982, Tungsten-bearing skarns of the Sierra Nevada. I. The Pine Creek mine, California. Economic Geology, 77, 823–844.

    Article  Google Scholar 

  71. Noh, J.H. and Oh, S.J., 2005, Hydrothermal alteration of the Pungchon limestone and the formation of high-Ca limestone. Journal of the Geological Society of Korea, 41, 175–197.

    Google Scholar 

  72. Park, C., Song, Y., Chi, S.J., Kang, I.M., Yi, K., and Chung, D., 2013, U-Pb (SHRIMP) and K-Ar age dating of intrusive rocks and skarn minerals at the W-skarn in Weondong deposit. Journal of Mineralogical Society of Korea, 26, 161–174.

    Article  Google Scholar 

  73. Park, C., Song, Y., Kang, I.M., Shim, J., Chung, D., and Park, C.S., 2017b, Metasomatic changes during periodic fluid flux recorded in grandite garnet from the Weondong W-skarn deposit, South Korea. Chemical Geology, 451, 135–153.

    Article  Google Scholar 

  74. Park, C., Choi, W., Kim, H., Park, M.H., Kang, I.M., Lee, H.S., and Song, Y., 2017a, Oscillatory zoning in skarn garnet: implications for tungsten ore exploration. Ore Geology Reviews, 89, 1006–1018.

    Article  Google Scholar 

  75. Park, H.I., Chang, H.W., and Jin, M.S., 1988, K-Ar ages of mineral deposits in the Taebaeg mountain district. Economic and Environmental Geology, 21, 57–67.

    Google Scholar 

  76. Park, K.H. and Chang, H.W., 2005, Pb isotopic composition of Yeonhwa and Janggun Pb-Zn ore deposits and origin of Pb: role of Precambrian crustal basement and Mesozoic igneous rocks. Journal of Petrological Society of Korea, 14, 141–148.

    Google Scholar 

  77. Park, K.H., Cheong, C.S., Lee, K.S., and Chang, H.W., 1993, Isotopic composition of lead in Precambrian granitic rocks of the Taebaeg area. Journal of the Petrological Society of Korea, 29, 387–395.

    Google Scholar 

  78. Polya, D.A., 1988, Efficiency of hydrothermal ore formation and the Panasqueira W-Cu(Ag)-Sn vein deposit. Nature, 333, 838.

    Article  Google Scholar 

  79. Ryzhenko, B.N., Kovalenko, N.I., and Prisyagina, N.I., 2006, Titanium complexation in hydrothermal systems. Geochemistry International, 44, 879–895.

    Article  Google Scholar 

  80. Sato, K., Shibata, K., Uchiumi, S., and Shimazaki, H., 1981, Mineralization age of the Shinyemi Zn-Pb-Mo deposit in the Taebaegsan area, southern Korea. Mining Geology, 31, 333–336. https://doi.org/10.11456/shigenchishitsu1951.31.333

    Google Scholar 

  81. Seo, J., Choi, S.G., Kim, C.S., Park, J.W., Yoo, I.K., and Kim, N.H., 2007, The skarnification and Fe-Mo mineralization at lower part of western Shinyemi orebody in Taeback area. Journal of Mineralogical Society of Korea, 20, 35–46.

    Google Scholar 

  82. Seo, J.H., Guillong, M., and Heinrich, C.A., 2012, Separation of molybdenum and copper in porphyry deposits: the roles of sulfur, redox and pH in ore mineral deposition at Bingham Canyon. Economic Geology, 107, 333–356.

    Article  Google Scholar 

  83. Seo, J.H., Yoo, B.C., Villa, I.M., Lee, J.H., Lee, T.H., Kim, C.S., and Moon, K.J., 2017, Magmatic-hydrothermal processes in Sangdong W-Mo deposit, Korea: study of fluid inclusions and 39Ar-40Ar geochronology. Ore Geology Reviews, 91, 316–334.

    Article  Google Scholar 

  84. So, C.S., Yun, S.T., and Koh, Y.K., 1993, Mineralogic, fluid inclusion, and stable isotope evidence for the genesis of carbonate-hosted Pb-Zn(-Ag) orebodies of the Taebaek Deposit, Republic of Korea. Economic Geology, 88, 855–872.

    Article  Google Scholar 

  85. Song, G.X., Cook, N.J., Li, G.M., Qin, K.Z., Ciobanu, C.L., Yang, Y.H., and Xu, Y.X., 2019, Scheelite geochemistry in porphyry-skarn W-Mo systems: a case study from the Gaojiabang Deposit, East China. Ore Geology Reviews, 113, 103084. https://doi.org/10.1016/j.oregeorev.2019.103084

    Article  Google Scholar 

  86. Su, S.Q., Qin, K.Z., Li, G.M., Olin, P. and Thompson, J., 2019, Cathodoluminescence and trace elements of scheelite: Constraints on oreforming processes of the Dabaoshan porphyry Mo-W deposit, South China. Ore Geology Reviews, 113, 103084. https://doi.org/10.1016/j.oregeorev.2019.103084

    Article  Google Scholar 

  87. Sylvester, P.J. and Ghaderi, M., 1997, Trace element analysis of scheelite by excimer laser ablation-inductively coupled plasma-mass spectrometry (ELA-ICP-MS) using a synthetic silicate glass standard. Chemical Geology, 141, 49–65.

    Article  Google Scholar 

  88. Tanis, E.A., Simon, A., Zhang, Y., Chow, P., Xiao, Y., Hanchar, J.M., Tschauner, O., and Shen, G., 2016, Rutile solubility in NaF-NaCl-KCl-bearing aqueous fluids at 0.5-2.79 GPa and 250–650 °C. Geochimica et Cosmochimica Acta, 177, 170–181.

    Article  Google Scholar 

  89. Timofeev, A., Migdisov, A.A., and Williams-Jones, A.E., 2015, An experimental study of the solubility and speciation of niobium in fluoride-bearing aqueous solutions at elevated temperature. Geochimica et Cosmochimica Acta, 158, 103–111.

    Article  Google Scholar 

  90. Timofeev, A., Migdisov, A.A., and Williams-Jones, A.E., 2017, An experimental study of the solubility and speciation of tantalum in fluoride-bearing aqueous solutions at elevated temperature. Geochimica et Cosmochimica Acta, 197, 294–304.

    Article  Google Scholar 

  91. Tyson, R.M., Hemphill, W.R., and Theisen, A.F., 1988, Effect of the W:Mo ratio on the shift of excitation and emission spectra in the scheelitepowellite series. American Mineralogist, 73, 1145–1154.

    Google Scholar 

  92. Wheeler, A., 2016, Technical report on the mineral resources and reserves of the Sangdong project, South Korea. Report NI 43-101, Almonty Industries, Toronto, Canada, 253 p.

    Google Scholar 

  93. Wood, S.A., Wesolowski, D.J., and Palmer, D.A., 2000, The aqueous geochemistry of the rare earth elements: IX. A potentiometric study of Nd3+ complexation with acetate in 0.1 molal NaCl solution from 25 to 250 °C. Chemical Geology, 167, 231–253.

    Article  Google Scholar 

  94. Yang, D.Y., 1991, Mineralogy, petrology and geochemistry of the magnesian skarn-type magnetite deposits at the Shinyemi mine, Republic of Korea. Ph.D. Thesis, Waseda University, Tokyo, 323 p.

    Google Scholar 

  95. Yoo, B.C., 2012, Element dispersion by the wallrock alteration of Janggun lead-zinc-silver deposit. Economic and Environmental Geology, 45, 623–641.

    Article  Google Scholar 

  96. Yoo, B.C., 2016, Geology and ore deposit survey, and origin study for securing potential orebody in the Taebaegsan metallogenic belt. Report GP2015-032-2015(1), Korea Institute of Geoscience and Mineral Resource (KIGAM), Daejeon, 237 p.

    Google Scholar 

  97. Yoon, G.S., Yoon, W.S., Kim, I.S., Jeong, E.J., Yoon, M.J., Lee, J.T., Lim, B.R., Oh, Y.B., Lim, S.T., Moon, K.H., and Kim, J.H., 2013, Detailed exploration report of Seobyuk W area. Report, Korea Mineral Resource Corporation (KORES), Seoul, 120 p.

    Google Scholar 

  98. Yun, H.S., 1986, Petrochemical study on the Cretaceous granitic rocks in the southern area of Hambaeg basin. Economic and Environmental Geology, 19, 175–191.

    Google Scholar 

  99. Yun, H.S., 1988, Metamorphic facies of Goseonri Formation and petrogenetic comparison of granitic rocks in the Sangdong area. Journal of the Geological Society of Korea, 24, 189–198.

    Google Scholar 

  100. Yun, S., 1983, Skarn-ore associations and phase equilibria in the Yeonhwa-Keodo mines, Korea. Economic and Environmental Geology, 16, 1–10.

    Google Scholar 

  101. Yun, S. and Silberman, M.L., 1979, K-Ar geochronology of igneous rocks in the Yeonhwa-Ulchin zinc-lead district and southern margin of the Taebaegsan basin, Korea. Journal of the Geological Society of Korea, 15, 89–100.

    Google Scholar 

  102. Yun, S. and Einaudi, M.T., 1982, Zinc-lead skarns of the Yeonhwa-Ulchin district, South Korea. Economic Geology, 77, 1013–1032.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Markus Walle for his assistance with the LA-ICP-MS analysis in ETH Zurich and Ms. Seunghee Han in Korea Polar Research Institute (KOPRI). This work was supported by a National Research Foundation (NRF) of Korea grant funded by the Korean government (MSIT) (#NRF-2019R1C1C1002588) and by the Korea Institute for Geoscience and Mineral Resources (KIGAM) research projects “Geology and ore deposit survey and origin study for securing potential orebodies in the Taebaegsan metallogenic belt” (15-3211 and 16-3211) and “Verification of North Korean mineral resources exploration technologies and potential evaluation of North Korean mineral deposits” (18-8901 and 19-8901). Staff from the Sangdong deposit (Almonty Korea) and calcite deposits (Omya Korea) are thanked for their assistance with underground and drill core sampling. We thank Dr. Dominique Tanner and Dr. Johann Raith for constructive discussion.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jung Hun Seo.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seo, J.H., Yoo, B.C., Yang, Y. et al. Scheelite geochemistry of the Sangdong W-Mo deposit and W prospects in the southern Taebaeksan metallogenic region, Korea. Geosci J (2020). https://doi.org/10.1007/s12303-020-0005-z

Download citation

Key words

  • Taebaeksan region
  • scheelite
  • Sangdong deposit
  • LA-ICP-MS
  • geochemical exploration