Skip to main content
Log in

Effect of sulfate limitation on sulfur isotope fractionation in batch cultures of sulfate reducing bacteria

  • Letter
  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

Dissimilatory reduction of sulfate to sulfide produces a wide range of sulfur isotope effects, enriching heavy isotopes of sulfur in the remaining sulfate. This isotope fractionation is known to decrease at low sulfate concentrations, which has been used to assess marine sulfate levels throughout the geologic record. So far, the relationships of fractionations to the sulfate concentrations have been examined exclusively in continuous cultures or cell suspensions with continuous removal of the metabolic product sulfide, although sulfate respiration often results in the accumulation of high levels of sulfide in nature. High sulfide levels, as opposed to the effect of sulfate depletion, can increase the magnitude of sulfur isotope fractionation. Thus, I investigate the sulfur isotope fractionation by sulfate reducing bacteria, Desulfovibrio alaskensis and Desulfovibrio sp. DMSS1, in pyruvate batch cultures, where low sulfate but high sulfide concentrations can be achieved. The improved sensitivity of the new analytical method using multicollector ICP-MS makes it easier to measure the sulfur isotope composition of residual sulfate. Both species of Desulfovibrio fractionate sulfur isotopes by 11 to 12‰ with sulfate in excess, but as sulfate is used up in the culture medium, sulfur isotope fractionations decrease down to 0‰ and 3‰ for D. alaskensis and DMSS1, respectively. The results here suggest that elevated sulfide levels are likely secondary to the sulfate availability in determining the magnitude of isotope fractionation. However, the threshold sulfate concentrations at which isotope effect diminishes are apparently different between the two species studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Algeo, T.J., Luo, G.M., Song, H.Y., Lyons, T.W., and Canfield, D.E., 2015, Reconstruction of secular variation in seawater sulfate concentrations. Biogeosciences, 12, 2131–2151.

    Article  Google Scholar 

  • Berner, R.A., 1984, Sedimentary pyrite formation: an update. Geochimica et Cosmochimica Acta, 48, 605–615.

    Article  Google Scholar 

  • Berner, R.A. and Raiswell, R., 1983, Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory. Geochimica et Cosmochimica Acta, 47, 855–862.

    Article  Google Scholar 

  • Bolliger, C., Schroth, M.H., Bernasconi, S.M., Kleikemper, J., and Zeyer, J., 2001, Sulfur isotope fractionation during microbial sulfate reduction by toluene-degrading bacteria. Geochimica et Cosmochimica Acta, 65, 3289–3298.

    Article  Google Scholar 

  • Borowski, W.S., Rodriguez, N.M., Paull, C.K., and Ussler III, W., 2013, Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record?. Marine and Petroleum Geology, 43, 381–395.

    Article  Google Scholar 

  • Bradley, A.S., Leavitt, W.D., Schmidt, M., Knoll, A.H., Girguis, P.R., and Johnston, D.T., 2016, Patterns of sulfur isotope fractionation during microbial sulfate reduction. Geobiology, 14, 91–101.

    Article  Google Scholar 

  • Brunner, B. and Bernasconi, S.M., 2005, A revised isotope fractionation model for dissimilatory sulfate reduction in sulfate reducing bacteria. Geochimica et Cosmochimica Acta, 69, 4759–4771.

    Article  Google Scholar 

  • Brychkova, G., Xia, Z., Yang, G., Yesbergenova, Z., Zhang, Z., Davydov, O., Fluhr, R., and Sagi, M., 2007, Sulfite oxidase protects plants against sulfur dioxide toxicity. The Plant Journal, 50, 696–709.

    Article  Google Scholar 

  • Canfield, D.E. and Teske, A., 1996, Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature, 382, 127–132.

    Article  Google Scholar 

  • Cline, J.D., 1969, Spectrophotometric determination of hydrogen sulfide in natural waters1. Limnology and Oceanography, 14, 454–458.

    Article  Google Scholar 

  • Crowe, S.A., Paris, G., Katsev, S., Jones, C., Kim, S.T., Zerkle, A.L., Nomosatryo, S., Fowle, D.A., Adkins, J.F., Sessions, A.L., and Farquhar, J., 2014, Sulfate was a trace constituent of Archean seawater. Science, 346, 735–739.

    Article  Google Scholar 

  • Cypionka, H., 1989, Characterization of sulfate transport in Desulfovibrio desulfuricans. Archives of microbiology, 152, 237–243.

    Article  Google Scholar 

  • Detmers, J., Brüchert, V., Habicht, K.S., and Kuever, J., 2001, Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes. Applied and Environmental Microbiology, 67, 888–894.

    Article  Google Scholar 

  • Devol, A.H., Anderson, J.J., Kuivila, K., and Murray, J.W., 1984, A model for coupled sulfate reduction and methane oxidation in the sediments of Saanich Inlet. Geochimica et cosmochimica Acta, 48, 993–1004.

    Article  Google Scholar 

  • Eckert, T., Brunner, B., Edwards, E.A., and Wortmann, U.G., 2011, Microbially mediated re-oxidation of sulfide during dissimilatory sulfate reduction by Desulfobacter latus. Geochimica et Cosmochimica Acta, 75, 3469–3485.

    Article  Google Scholar 

  • Fike, D.A., Bradley, A.S., and Rose, C.V., 2015, Rethinking the ancient sulfur cycle. Annual Review of Earth and Planetary Sciences, 43, 593–622.

    Article  Google Scholar 

  • Gomes, M.L. and Johnston, D.T., 2017, Oxygen and sulfur isotopes in sulfate in modern euxinic systems with implications for evaluating the extent of euxinia in ancient oceans. Geochimica et Cosmochimica Acta, 205, 331–359.

    Article  Google Scholar 

  • Habicht, K.S., Salling, L., Thamdrup, B., and Canfield, D.E., 2005, Effect of low sulfate concentrations on lactate oxidation and isotope fractionation during sulfate reduction by Archaeoglobus fulgidus strain Z. Applied and Environmental Microbiology, 71, 3770–3777.

    Article  Google Scholar 

  • Habicht, K.S., Gade, M., Thamdrup, B., Berg, P., and Canfield, D.E., 2002, Calibration of sulfate levels in the Archean ocean. Science, 298, 2372–2374.

    Article  Google Scholar 

  • Harrison A.G. and Thode H.G., 1958, Mechanism of the bacterial reduction of sulphate from isotope fractionation studies. Transactions of the Faraday Society, 54, 84–92.

    Article  Google Scholar 

  • Hayes, J.M. and Waldbauer, J.R., 2006, The carbon cycle and associated redox processes through time. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 361, 931–950.

    Article  Google Scholar 

  • Jørgensen, B.B., 1982, Mineralization of organic matter in the sea bed - the role of sulphate reduction. Nature, 296, 643–645.

    Article  Google Scholar 

  • Kirkpatrick, J.B., Walsh, E.A., and D’Hondt, S., 2016, Fossil DNA persistence and decay in marine sediment over hundred-thousand year to million-year time scales. Geology, 44, 615–618.

    Article  Google Scholar 

  • Kleikemper, J., Schroth, M.H., Bernasconi, S.M., Brunner, B., and Zeyer, J., 2004, Sulfur isotope fractionation during growth of sulfate-reducing bacteria on various carbon sources. Geochimica et Cosmochimica Acta, 68, 4891–4904.

    Article  Google Scholar 

  • Kreke, B. and Cypionka, H., 1992, Protonmotive force in freshwater sulfate-reducing bacteria, and its role in sulfate accumulation in Desulfobulbus propionicus. Archives of Microbiology, 158, 183–187.

    Article  Google Scholar 

  • Leavitt, W.D., Halevy, I., Bradley, A.S., and Johnston, D.T., 2013, Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record. Proceedings of the National Academy of Sciences, 110, 11244–11249.

    Article  Google Scholar 

  • Leavitt, W.D., Cummins, R., Schmidt, M.L., Sim, M.S., Ono, S., Bradley, A.S., and Johnston, D.T., 2014, Multiple sulfur isotope signatures of sulfite and thiosulfate reduction by the model dissimilatory sulfate-reducer, Desulfovibrio alaskensis str. G20. Frontiers in Microbiology, 5, 591. https://doi.org/10.3389/fmicb.2014.00591

    Google Scholar 

  • Leloup, J., Loy, A., Knab, N.J., Borowski, C., Wagner, M., and Jørgensen, B.B., 2007, Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea. Environmental Microbiology, 9, 131–142.

    Article  Google Scholar 

  • Mandeville, C.W., 2010, Sulfur: a ubiquitous and useful tracer in Earth and planetary sciences. Elements, 6, 75–80.

    Article  Google Scholar 

  • Mariotti, A., Germon, J.C., Hubert, P., Kaiser, P., Letolle, R., Tardieux, A., and Tardieux, P., 1981, Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes. Plant Soil, 62, 413–430.

    Article  Google Scholar 

  • Matsu’ura, F., Sunamura, M., Ueno, Y., and Urabe, T., 2016, Influence of cell’s growth phase on the sulfur isotopic fractionation during in vitro microbial sulfate reduction. Chemical Geology, 431, 1–9.

    Article  Google Scholar 

  • Millar, C.D. and Lambert, D.M., 2013, Ancient DNA: towards a million-year-old genome. Nature, 499, 34–35.

    Article  Google Scholar 

  • Niewöhner, C., Hensen, C., Kasten, S., Zabel, M., and Schulz, H.D., 1998, Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia. Geochimica et Cosmochimica Acta, 62, 455–464.

    Article  Google Scholar 

  • Paris, G., Sessions, A.L., Subhas, A.V., and Adkins, J.F., 2013, MC-ICPMS measurement of δ34S and Δ33S in small amounts of dissolved sulfate. Chemical Geology, 345, 50–61.

    Article  Google Scholar 

  • Paris, G., Adkins, J.F., Sessions, A.L., Webb, S.M., and Fischer, W.W., 2014, Neoarchean carbonate-associated sulfate records positive Δ33S anomalies. Science, 346, 739–741.

    Article  Google Scholar 

  • Peterson, B.J., Howarth, R.W., and Garritt, R.H., 1986, Sulfur and carbon isotopes as tracers of salt-marsh organic matter flow. Ecology, 67, 865–874.

    Article  Google Scholar 

  • Pomeroy, R., 1954, disposal of waste water from oil fields in the coastal counties of California. Sewage and Industrial Wastes, 26, 59–70.

    Google Scholar 

  • Postgate, J.R., 1979, The Sulphate-reducing Bacteria. Cambridge University Press, London, 26 p.

    Google Scholar 

  • Sim, M.S., Bosak, T., and Ono, S., 2011a, Large sulfur isotope fractionation does not require disproportionation. Science, 333, 74–77.

    Article  Google Scholar 

  • Sim, M.S., Ono, S., Donovan, K., Templer, S.P., and Bosak, T, 2011b, Effect of electron donors on the fractionation of sulfur isotopes by a marine Desulfovibrio sp. Geochimica et Cosmochimica Acta, 75, 4244–4259.

    Article  Google Scholar 

  • Sim, M.S., Wang, D.T., Zane, G.M., Wall, J.D., Bosak, T., and Ono, S., 2013, Fractionation of sulfur isotopes by Desulfovibrio vulgaris mutants lacking hydrogenases or type I tetraheme cytochrome c3. Frontiers in Microbiology, 4, 171. https://doi.org/10.3389/fmicb.2013.00171

    Article  Google Scholar 

  • Sim, M.S., Paris, G., Adkins, J.F., Orphan, V.J., and Sessions, A.L., 2017, Quantification and isotopic analysis of intracellular sulfur metabolites in the dissimilatory sulfate reduction pathway. Geochimica et Cosmochimica Acta, 206, 57–72.

    Article  Google Scholar 

  • Sim, M.S., Ogata, H., Lubitz, W., Adkins, J.F., Sessions, A.L., Orphan, V.J., and McGlynn, S.E., 2019, Role of APS reductase in biogeochemical sulfur isotope fractionation. Nature Communications, 10, 44. https://doi.org/10.1038/s41467-018-07878-4

    Article  Google Scholar 

  • Thode, H.G., Kleerekoper, H., and McElcheran, D., 1951, Isotope fractionation in the bacterial reduction of sulphate. Research, 4, 581–582.

    Google Scholar 

  • Vosjan, J.H., 1975, Respiration and fermentation of the sulphate-reducing bacterium Desulfovibrio desulfuricans in a continuous culture. Plant and soil, 43, 141–152.

    Article  Google Scholar 

  • Weimer, P.J., Van Kavelaar, M.J., Michel, C.B., and Ng, T.K., 1988, Effect of phosphate on the corrosion of carbon steel and on the composition of corrosion products in two-stage continuous cultures of Desulfovibrio desulfuricans. Applied and Environmental Microbiology, 54, 386–396.

    Google Scholar 

  • Widdel, F., Kohring, G.W., and Mayer, F., 1983, Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. Archives of Microbiology, 134, 286–294.

    Article  Google Scholar 

  • Willerslev, E. and Cooper, A., 2004, Ancient DNA. Proceedings of the Royal Society B: Biological Sciences, 272, 3–16.

    Article  Google Scholar 

  • Wing, B.A. and Halevy, I., 2014, Intracellular metabolite levels shape sulfur isotope fractionation during microbial sulfate respiration. Proceedings of the National Academy of Sciences, 111, 18116–18125.

    Article  Google Scholar 

  • Wortmann, U.G., Bernasconi, S.M., and Böttcher, M.E., 2001, Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reduction. Geology, 29, 647–650.

    Article  Google Scholar 

  • Zerkle, A.L., Kamyshny Jr, A., Kump, L.R., Farquhar, J., Oduro, H., and Arthur, M.A., 2010, Sulfur cycling in a stratified euxinic lake with moderately high sulfate: constraints from quadruple S isotopes. Geochimica et Cosmochimica Acta, 74, 4953–4970.

    Article  Google Scholar 

Download references

Acknowledgments

The author is indebted to Professors J.F. Adkins, V.J. Orphan, and A.L. Sessions (California Institute of Technology, USA) for their support in data collection and sulfur isotope analysis. The author also thanks two anonymous reviewers for constructive comments on an earlier version of this manuscript. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2018R1D1A1B07050970).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Sub Sim.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sim, M.S. Effect of sulfate limitation on sulfur isotope fractionation in batch cultures of sulfate reducing bacteria. Geosci J 23, 687–694 (2019). https://doi.org/10.1007/s12303-019-0015-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-019-0015-x

Key words

Navigation