Skip to main content
Log in

Provenance and depositional environment of the Middle-Late Jurassic shales, northern Iraq

  • Article
  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

The Middle–Late Jurassic formations are regarded to be an important source rock in the Jurassic petroleum system of North Iraq. The major and trace element analysis on the Middle and Late Jurassic shales in the Imbricated Zone, Iraq was analyzed. This study investigated the shales provenance and depositional environment, in addition to evaluate the intensity of weathering in the source area. The chemical index of alteration (CIA), index of compositional variability (ICV) and the Al2O3-CaO + Na2O-K2O diagram of the shales suggest increasing in the intensity of chemical weathering from the Middle to the Late Jurassic due to the climatic change and/or tectonic activity. The elemental ratios: Al2O3/TiO2, Th/Sc, La/Th, Co/Th, (Gd/Yb)n, Eu/Eu*, and REE pattern; and tectonic discrimination diagrams indicated that they were derived from felsic source rocks in the crystalline basement of the northern fringe of the Arabian Shield and Rutba Uplift. The Sargelu, Naokelekan and Barsarin formations are also supplied from the intermediate source rocks from the Mid Oceanic Ridge and deposited in an active setting. The geochemical parameters suggest the lower part of the Middle Jurassic and the shales from upper part of the Late Jurassic were deposited in an oxic shallow marine environment; and other ages were deposited in an anoxic deep marine environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlbrandt, T.S., Pollastro, R.M., Klett, T.R., Schenk, C.J., Lindquist, S.J., and Fox, J.E, 2000, Middle east and North Africa Region 2. U.S. Geological Survey Digital Data Series 60, United States Geological Survey World Energy Assessment Team, 45 p.

    Google Scholar 

  • Akarish, A.I.M. and El-Gohary, A.M., 2008, Petrography and geochemistry of lower Paleozoic sandstones, East Sinai, Egypt: implications for provenance and tectonic setting. Journal of African Earth Sciences, 52, 43–54.

    Article  Google Scholar 

  • Akinyemi, S.A., Adebayo, O.F., Ojo1, O.A., Fadipe, O.A., and Gitari, W.M., 2013, Mineralogy and geochemical appraisal of paleo-redox indicators in Maastrichtian outcrop shales of Mamu Formation, Anambra Basin, Nigeria. Journal of Natural Sciences Research, 3, 48–64.

    Google Scholar 

  • Al-Shwaily, A.K., Al-Mosawi, H.A., Al-Saffi, I.K., Bashir, W.P., Ibrahim, A.A., Al-Jubouri, B.S., Al-Kubaisi, K.N., Mahmood, A.A., and Al-Shawi, S.A., 2012, Semi detailed geological mapping of Sulaimaniyah-Surdash area. Iraqi Geological Survey, Internal Report No. 3340, Baghdad, 54 p.

    Google Scholar 

  • Anaya-Gregorio, A., Armstrong-Altrin, J.S., Machain-Castillo, M.L., Montiel-García, P.C., and Ramos-Vázquez, M.A., 2018, Textural and geochemical characteristics of late Pleistocene to Holocene fine-grained deep-sea sediment cores (GM6 and GM7), recovered from southwestern Gulf of Mexico. Journal of Palaeogeography, 7, 1–19.

    Article  Google Scholar 

  • Anderson, R.F., Bacon, M.P., and Brewer, P.G., 1983, Removal of 230Th and 231Pa at ocean margins. Earth and Planetary Science Letters, 66, 73–90.

    Article  Google Scholar 

  • Armstrong-Altrin, J.S., 2009, Provenance of sands from Cazones, Acapulco, and Bahía Kino beaches, Mexico. Revista Mexicana de Ciencias Geológicas, 26, 764–782.

    Google Scholar 

  • Armstrong-Altrin, J.S., 2015, Evaluation of two multidimensional discrimination diagrams from beach and deep-sea sediments from the Gulf of Mexico and their application to Precambrian clastic sedimentary rocks. International Geology Review, 57, 1446–1461.

    Article  Google Scholar 

  • Armstrong-Altrin, J.S., Lee, Y.I., Kasper-Zubillaga, J.J., Carranza-Edwards, A., Garcia, D., Eby, N., Balaram, V., and Cruz-Ortiz, N.L., 2012, Geochemistry of beach sands along the Western Gulf of Mexico, Mexico: implication for provenance. Chemie der Erde, 72, 345–362.

    Article  Google Scholar 

  • Armstrong-Altrin, J.S., Lee, Y.I., Verma, S.P., and Ramasamy, S., 2004, Geochemistry of sandstones from the upper Miocene Kudankulam Formation, Southern India: implications for provenance, weathering, and tectonic setting. Journal of Sedimentary Research, 74, 285–297.

    Article  Google Scholar 

  • Armstrong-Altrin, J.S. and Machain-Castillo, M.L., 2016, Mineralogy, geochemistry, and radiocarbon ages of deep sea sediments from the Gulf of Mexico, Mexico. Journal of South American Earth Sciences, 71, 182–200.

    Article  Google Scholar 

  • Armstrong-Altrin, J.S., Machain-Castillo, M.L., Rosales-Hoz, L., Carranza-Edwards, A., Sanchez-Cabeza, J.A., and Ruíz-Fernández, A.C., 2015a, Provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico unraveled by geochemical analysis. Continental Shelf Research, 95, 15–26.

    Article  Google Scholar 

  • Armstrong-Altrin, J.S., Nagarajan, R., Balaram, V., and Natalhy-Pineda, O., 2015b, Petrography and geochemistry of sands from the Chachalacas and Veracruz beach areas, western Gulf of Mexico, Mexico: constraints on provenance and tectonic setting. Journal of South American Earth Sciences, 64, 199–216.

    Article  Google Scholar 

  • Armstrong-Altrin, J.S., Nagarajan, R., Lee, Y.I., Kasper-Zubillaga, J.J., and Córdoba-Saldana, L.P., 2014, Geochemistry of sands along the San Nicolas and San Carlos beaches, Gulf of California Mexico: implications for provenance and tectonic setting. Turkish Journal of Earth Sciences, 23, 533–558.

    Article  Google Scholar 

  • Armstrong-Altrin, J.S. and Verma, S.P., 2005, Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings. Sedimentary Geology, 177, 115–129.

    Article  Google Scholar 

  • Bellen, R.C., Van Dunnington, H.V., Wetzel, R., and Morton, D., 1959, Iraq–Lexique Stratigraphic International. v. 3, Asie, Fascicule 10a, Paris, 311 p.

    Google Scholar 

  • Bhatia, M.R., 1983, Plate tectonics and geochemical composition of sandstones. The Journal of Geology, 91, 611–627.

    Article  Google Scholar 

  • Bhatia, M.R. and Crook, K.A.W., 1986, Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92, 181–193.

    Article  Google Scholar 

  • Cao, J., Wu, M., Chen, Y., Hu, K., Bian, L., Wang, L.W., and Zhang, Y., 2012, Trace and rare earth element geochemistry of Jurassic mudstones in the northern Qaidam Basin, northwest China. Chemie der Erde, 72, 245–252.

    Article  Google Scholar 

  • Condie, K.C., 1993, Geochemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chemical Geology, 104, 1–37.

    Article  Google Scholar 

  • Condie, C.K., Noll, P.D., Jr., and Conway, C.M., 1992, Geochemical and detrital mode evidence for two sources of Early Proterozoic sedimentary rocks from the Tonto Basin Supergroup, central Arizona. Sedimentary Geology, 77, 51–76.

    Article  Google Scholar 

  • Cox, R. and Lowe, D.R., 1995, A conceptual review of regional scale controls on the compositions of clastic sediments and the co-evolution of continental blocks and their sedimentary cover. Journal of Sedimentary Research, 65, 1–12.

    Article  Google Scholar 

  • Cullers, R.L., 1994, The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian–Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochimica et Cosmochimica Acta, 58, 4955–4972.

    Article  Google Scholar 

  • Cullers, R.L., 1995, The controls on the major- and trace-element evolution of shales, siltstones, and sandstones of Ordovician to Tertiary age in the Wet Mountains region, Colorado, USA. Chemical Geology, 123, 107–131.

    Article  Google Scholar 

  • Cullers, R.L., 2002, Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA. Chemical Geology, 191, 305–327.

    Article  Google Scholar 

  • Cullers, R.L., Barret, T., Carlson, R., and Robinson, B., 1987, Rare earth element and mineralogical changes in Holocene soil and stream sediment: a case study in the Wet Mountains, Colorado, USA. Chemical Geology, 63, 275–295.

    Article  Google Scholar 

  • Cullers, R.L. and Podkovyrov, V.N., 2000, Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: implications for mineralogical and provenance control, and recycling. Precambrian Research, 104, 77–93.

    Article  Google Scholar 

  • Deepulal, P.M., Kumar, T.R., and Sujatha, C.H., 2012, Behavior of REEs in a tropical estuary and adjacent continental shelf of southwest coast of India: evidence from anomalies. Journal of Earth System Science, 121, 1215–1227.

    Article  Google Scholar 

  • Dickinson, W.R., 1985, Interpreting provenance relations from detrital modes of sandstones. In: Zuffa, G.G. (ed.), Provenance of Arenites. D. Reidel Publication Company, Dordrecht, p. 333–361.

  • Dickinson, W.R., 1988, Provenance and sediment dispersal in relation to paleo-tectonics, and paleogeography of sedimentary basins. In: Kleinspehn, K.L. and Paola, C. (eds.), New Perspectives in Basin Analysis. Springer, p. 3–25.

    Chapter  Google Scholar 

  • Dill, H., 1986, Metallogenesis of early Paleozoic graptolite shales from the Graefenthal Horst (northern Bavaria-Federal Republic of Germany). Economic Geology, 81, 889–903.

    Article  Google Scholar 

  • Dokuz, A. and Tanyolu, E., 2006, Geochemical constraints on the provenance, mineral sorting and subaerial weathering of Lower Jurassic and Upper Cretaceous clastic rocks of the eastern Pontides, Yusufeli (Artvin), NE Turkey. Turkish Journal of Earth Sciences, 15, 181–209.

    Google Scholar 

  • Dostal, J. and Keppie, J.D., 2009, Geochemistry of low-grade clastic rocks in the Acatlan Complex of southern Mexico: evidence for local provenance in felsic-intermediate igneous rocks. Sedimentary Geology, 222, 241–253.

    Article  Google Scholar 

  • Dypvik, H., 1984, Geochemical compositions and depositional conditions of Upper Jurassic and Lower Cretaceous Yorkshire clays, England. Geological Magazine, 121, 489–504.

    Article  Google Scholar 

  • Elyas, Y.K., 2014, Inorganic geochemistry of black shale in Sargelu Formation from selected sections in Iraqi Kurdistan Region. Ph.D. Thesis, Salahaddin University, Erbil, 194 p.

    Google Scholar 

  • Fedo, C.M., Eriksson, K.A., and Krogstad, E.J., 1996, Geochemistry of shales from the Archean (~3.0 Ga) Buhwa Greenstone Belt, Zimbabwe: implications for provenance and source area weathering. Geochimica et Cosmochimica Acta, 60, 1751–1763.

    Article  Google Scholar 

  • Fedo, C.M., Nesbitt, H.W., and Young, G.M., 1995, Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23, 921–924.

    Article  Google Scholar 

  • Floyd, P.A. and Leveridge, B.E., 1987, Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. Journal of the Geological Society, 144, 531–542.

    Article  Google Scholar 

  • Garcia, D., Coehlo, J., and Perrin, M., 1991, Fractionation between TiO2 and Zr as a measure of sorting within shale and sandstone series (northern Portugal). European Journal of Mineralogy, 3, 401–414.

    Article  Google Scholar 

  • Ghandour, I.M., Masuda, H., and Maejima, W., 2003, Mineralogical and chemical characteristics of Bajocian-Bathonian shales, G. Al-Maghara, North Sinai, Egypt: climatic and environmental significance. Geochemical Journal, 37, 87–108.

    Google Scholar 

  • Girty, G.H., Hanson, A.D., Knaack, C., and Johnson, D., 1994, Provenance determined by REE, Th, and Sc analyses of metasedimentary rocks, Boyden Cave roof pendant, central Sierra Nevada, California. Journal of Sedimentary Research, 64, 68–73.

    Google Scholar 

  • Guo, Q., Shields, G.A., Liu, C., Strauss, H., Zhu, M., Pi, D., Goldberg, T., and Yang, X., 2007, Trace element chemostratigraphy of two Ediacaran–Cambrian successions in South China: implications for organosedimentary metal enrichment and silicification in the early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 254, 194–216.

    Article  Google Scholar 

  • Hatch, J.R. and Leventhal, J.S., 1992, Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chemical Geology, 99, 65–82.

    Article  Google Scholar 

  • Hayashi, K., Fujisawa, H., Holland, H.D., and Ohmoto, H., 1997, Geochemistry of ~1.9 Ga sedimentary rocks from southeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 61, 4115–4137.

    Article  Google Scholar 

  • Hernández-Hinojosa, V., Montiel-García, P.C., Armstrong-Altrin, J.S., Nagarajan, R., and Kasper-Zubillaga, J.J., 2018, Textural and geochemical characteristics of beach sands along the western Gulf of Mexico, Mexico. Carpathian Journal of Earth and Environmental Sciences, 13, 161–174.

    Article  Google Scholar 

  • Herron, M.M., 1988, Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology, 58, 820–829.

    Google Scholar 

  • Hosseininejad, S., Pedersen, P.K., Spencer, R.J., and Nicolas, M.P.B., 2012, Mineralogy, geochemistry and facies description of a potential Cretaceous shale gas play in western Manitoba (part of NTS 63K12). In: Report of Activities 2012, Manitoba Innovation, Energy and Mines. Manitoba Geological Survey, p. 151–159.

    Google Scholar 

  • Jacobson, A.D., Blum, J.D., Chamberlian, C.P., Craw, D., and Koons, P.O., 2003, Climate and tectonic controls on chemical weathering in the New Zealand Southern Alps. Geochimica et Cosmochimica Acta, 37, 29–46.

    Article  Google Scholar 

  • Jassim, S.Z. and Goff, J.C., 2006, Phanerozoic development of the Northern Arabian Plate. In: Jassim, S.Z. and Goff, J.C. (eds.), Geology of Iraq. Dolin, Prague and Moravian Museum, Brno, p. 32–44.

    Google Scholar 

  • Jones, B. and Manning, D.A.C., 1994, Composition of geochemical indices used for the interpretation of paleoredox conditions in ancient mudstones. Chemical Geology, 111, 111–129.

    Article  Google Scholar 

  • Keskin, S., 2011, Geochemistry of Çamard Formation sediments, central Anatolia (Turkey): implication of source area weathering, provenance, and tectonic setting. Geosciences Journal, 15, 185–195.

    Article  Google Scholar 

  • Kimura, H. and Watanabe, Y., 2001, Oceanic anoxia at the Precambrian–Cambrian boundary. Geology, 29, 995–998.

    Article  Google Scholar 

  • Klinkhammer, G.P. and Palmer, M.R., 1991, Uranium in the oceans: where it goes and why? Geochimica et Cosmochimica Acta, 55, 1799–1806.

    Article  Google Scholar 

  • McKirdy, D.M., Hall, P.A., Nedin, C., Halverson, G.P., Michaelsen, B.H., Jago, J.B., Gehling, J.G., and Jenkins, R.J.F., 2011, Paleoredox status and thermal alteration of the lower Cambrian (Series 2) Emu Bay Shale Lagerstätte, South Australia. Australian Journal of Earth Sciences, 58, 259–272.

    Article  Google Scholar 

  • McLennan, S.M., 1989, Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Lipin, B.R. and McKay, G.A. (eds.), Geochemistry and Mineralogy of Rare Earth Elements. Reviews in Mineralogy, Mineralogical Society of America, 21, p. 169–200.

    Article  Google Scholar 

  • McLennan, S.M., 2001, Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry Geophysics Geosystems, 2, 1021–1045.

    Article  Google Scholar 

  • McLennan, S.M., Hemming, S., McDaniel, D.K., and Hanson, G.N., 1993, Geochemical approaches to sedimentation, provenance, and tectonics. In: Johnson, M.J. and Basu, A. (eds.), Processes Controlling the Composition of Clastic Sediments. Geological Society of America, Special Papers, 284, p. 21–40.

    Article  Google Scholar 

  • McLennan, S.M., Hemming, S.R., Taylor, S.R., and Eriksson, K.A., 1995, Early Proterozoic crustal evolution: geochemical and Nd-Pb isotopic evidence from metasedimentary rocks, southern North America. Geochimica et Cosmochimica Acta, 59, 1153–1177.

    Article  Google Scholar 

  • McLennan, S.M. and Taylor, S.R., 1991, Sedimentary rocks and crustal evolution: tectonic setting and secular trends. Journal of Geology, 99, 1–21.

    Article  Google Scholar 

  • McLennan, S.M., Taylor, S.R., McCulloch, M.T., and Maynard, J.B., 1990, Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochimica et Cosmochimica Acta, 54, 2015–2050.

    Article  Google Scholar 

  • Moosavirad, S.M., Janardhana, M.R., Sethumadhav, M.S., Moghadam, M.R., and Shankara, M., 2011, Geochemistry of lower Jurassic shales of the Shemshak Formation, Kerman Province, Central Iran: provenance, source weathering and tectonic setting. Chemie der Erde, 71, 279–288.

    Article  Google Scholar 

  • Nagarajan, R., Madhavaraju, J., Nagendra, R., Armstrong-Altrin, J.S., and Moutte, J., 2007, Geochemistry of Neoproterozoic shales of the Rabanpalli Formation, Bhima Basin, northern Karnataka, southern India: implications for provenance and paleoredox conditions. Revista Mexicana de Ciencias Geologicas, 24, 150–160.

    Google Scholar 

  • Nath, B.N., Kunzendorf, H., and Pluger, W.L., 2000, Influence of provenance, weathering and sedimentary processes on the elemental ratios of the fine-grained fraction of the bedload sediments from the Vembanad Lake and the adjoining continental shelf, southwest coast of India. Journal of Sedimentary Research, 70, 1081–1094.

    Article  Google Scholar 

  • Nesbitt, H.W. and Young, G.M., 1984, Predictions of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48, 1523–1534.

    Article  Google Scholar 

  • Nesbitt, H.W. and Young, G.M., 1989, Formation and diagenesis of weathering profiles. Journal of Geology, 97, 129–147.

    Article  Google Scholar 

  • Pattan, J.N., Masuzawa, T., Borole, D.V., Parthiban, G., Jauhari, P., and Yamamoto, M., 2005, Biological productivity, terrigenous influence and noncrustal elements supply to the central Indian Ocean Basin: paleoceanography during the past 1 Ma. Journal of Earth System Science, 114, 63–74.

    Article  Google Scholar 

  • Potter, P.E., Maynard, J.B., and Depetris, P.J., 2005, Mud and Mudstones: Introduction and Overview. Springer, New York, 297 p.

    Book  Google Scholar 

  • Roser, B.P. and Korsch, R.J., 1986, Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O:Na2O ratio. Journal of Geology, 94, 635–650.

    Article  Google Scholar 

  • Ryan, K.M. and Williams, D.M., 2007, Testing the reliability of discrimination diagrams for determining the tectonic depositional environment of ancient sedimentary basins. Chemical Geology, 242, 103–125.

    Article  Google Scholar 

  • Shadan, M. and Hosseini-Barzi, M., 2013, Petrography and geochemistry of the Ab-e-Haji Formation in central Iran: implications for provenance and tectonic setting in the southern part of the Tabas block. Revista Mexicana de Ciencias Geologicas, 30, 80–95.

    Google Scholar 

  • Sissakian, V.K. and Fouad, S.F., 2012, Geological Map of Iraq (1:1,000,000). Iraqi Bulletin of Geology and Mining, 11, 9–16.

    Google Scholar 

  • Srivastava, A.K., Randive, K.R., and Khare, N., 2013, Mineralogical and geochemical studies of glacial sediments from Schirmacher Oasis, East Antarctica. Quaternary International, 292, 205–216.

    Article  Google Scholar 

  • Tapia-Fernandez, H.J., Armstrong-Altrin, J.S., and Selvaraj, K., 2017, Geochemistry and U-Pb geochronology of detrital zircons in the Brujas beach sands, Campeche, Southwestern Gulf of Mexico, Mexico. Journal of South American Earth Sciences, 76, 346–361.

    Article  Google Scholar 

  • Tawfik, H.A., Ghandour, M.I., Maejima, W., and Abdelhameed, A.T., 2012, Petrochemistry of the Lower Cambrian Araba Formation, Taba Area, East Sinai, Egypt. American Association of Petroleum Geologists Annual Convention and Exhibition (Abstract), Long beach, Apr. 22–25, #50655.

    Google Scholar 

  • Tawfik, H.A., Ghandour, M.I., Maejima, W., Armstrong-Altrin, J.S., and Abdel-Hameed, A.T., 2015, Petrography and geochemistry of the siliciclastic Araba Formation (Cambrian), east Sinai, Egypt: implications for provenance, tectonic setting and source weathering. Geological Magazine, 154, 1–23.

    Article  Google Scholar 

  • Taylor, S.R. and McLennan, S., 1985, The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, 312 p.

    Google Scholar 

  • Tobia, F.H. and Shangola, S.S., 2016, Mineralogy, geochemistry, and depositional environment of the Beduh Shale (Lower Triassic), Northern Thrust Zone, Iraq. Turkish Journal of Earth Sciences, 25, 367–391.

    Article  Google Scholar 

  • Valloni, R. and Maynard, J.B., 1981, Detrital modes of recent deep-sea sands and their relation to tectonic setting: a first approximation. Sedimentology, 28, 75–83.

    Article  Google Scholar 

  • Verma, S.P. and Armstrong-Altrin, J.S., 2013, New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chemical Geology, 355, 117–133.

    Article  Google Scholar 

  • Verma, S.P. and Armstrong-Altrin, J.S., 2016, Geochemical discrimination of siliciclastic sediments from active and passive margin settings. Sedimentary Geology, 332, 1–12.

    Article  Google Scholar 

  • Wanty, R.B. and Goldhaber, M.B., 1992, Thermodynamics and kinetics of reactions involving vanadium in natural systems: accumulation of vanadium in sedimentary rocks. Geochimica et Cosmochimica Acta, 56, 1471–1483.

    Article  Google Scholar 

  • Weaver, C.E., 1989, Clays, Muds, and Shales. Elsevier, Amsterdam, 819 p.

    Google Scholar 

  • Wignall, P.B. and Myers, K.J., 1988, Interpreting the benthic oxygen levels in mudrocks: a new approach. Geology, 16, 452–455.

    Article  Google Scholar 

  • Wronkiewicz, D.J. and Condie, K.C., 1987, Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: sourcearea weathering and provenance. Geochimica et Cosmochimica Acta, 51, 2401–2416.

    Article  Google Scholar 

  • Yamada, M. and Tsunogai, S., 1984, Post depositional enrichment of uranium in sediment from the Bering Sea. Marine Geology, 54, 263–276.

    Article  Google Scholar 

  • Yang, J.H., Jiang, S.Y., Ling, H.F., Feng, H.Z., Chen, Y.Q., and Chen, J., 2004, Paleoceangraphic significance of redox-sensitive metals of black shales in the basal Lower Cambrian Niutitang Formation in Guizhou Province, South China. Progress in Natural Sciences, 14, 118–123.

    Google Scholar 

  • Yarincik, K.M., Murray, R.W., Lyons, T.W., Peterson, L.C., and Haug, G.H., 2000, Oxygenation history of bottom waters in the Cariaco Basin, Venezuela, over the past 578,000 years: results from redoxsensitive metals (Mo, V, Mn, and Fe). Paleoceanography, 15, 593–604.

    Article  Google Scholar 

  • Zaid, S.M., Elbadry, O., Ramadan, F., and Mohamed, M., 2015, Petrography and geochemistry of Pharaonic sandstone monuments in Tall San Al Hagr, Al Sharqiya Governorate, Egypt: implications for provenance and tectonic setting. Turkish Journal of Earth Sciences, 24, 344–364.

    Article  Google Scholar 

  • Zaid, S.M. and Gahtani, F.A., 2015, Provenance, diagenesis, tectonic setting, and geochemistry of Hawkesbury Sandstone (Middle Triassic), southern Sydney Basin, Australia. Turkish Journal of Earth Sciences, 24, 72–98.

    Article  Google Scholar 

  • Zhang, Y., He, B., and Xu, Y., 2013, Mineralogy and geochemistry of claystones from the Guadalupian–Lopingian boundary at Penglaitan, South China: insights into the pre-Lopingian geological events. Journal of Asian Earth Sciences, 62, 438–462.

    Article  Google Scholar 

  • Zheng, Y., Anderson, R.F., Van Geen, A., and Fleisher, M., 2002, Remobilization of authigenic uranium from marine sediments by bioturbation. Geochimica et Cosmochimica Acta, 66, 1759–1772.

    Article  Google Scholar 

  • Zimmermann, U. and Spalletti, L.A., 2009, Provenance of the Lower Paleozoic Balcarce Formation (Tandilia System, Buenos Aires Province, Argentina): implications for paleogeographic reconstructions of SW Gondwana. Sedimentary Geology, 219, 7–23.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Zerak Tahseen, Salahaddin University for help during the field work. We sincerely thank the anonymous reviewers and the editor of the journal for their comments and constructive suggestions, which significantly improved our representation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faraj Habeeb Tobia.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tobia, F.H., Al-Jaleel, H.S. & Ahmad, I.N. Provenance and depositional environment of the Middle-Late Jurassic shales, northern Iraq. Geosci J 23, 747–765 (2019). https://doi.org/10.1007/s12303-018-0072-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-018-0072-6

Key words

Navigation