De novo transcriptome assembly of transgenic tobacco (Nicotiana tabacum NC89) with early senescence characteristic

Abstract

The enzyme, α-farnesene synthase (AFS), which synthesizes α-farnesene, is the final enzyme in α-farnesene synthesis pathway. We overexpressed the α-farnesene synthase gene (previously cloned in our lab from apple peel) and ectopically expressed it in tobacco (Nicotiana tabacum NC89). Then, the transgenic plants showed an accelerated developmental process and bloomed about 7 weeks earlier than the control plants. We anticipate that de novo transcriptomic analyses of N. tabacum may provide useful information on isoprenoid biosynthesis, growth, and development. We generated 318,925,338 bp sequencing data using Illumina paired-end sequencing from the cDNA library of the apical buds of transgenic line and the wild-type line. We annotated and functionally classified the unigenes in a nucleotide and protein database. Differentially expressed unigenes may be involved in carbohydrate metabolism, nitrogen metabolism, transporter activity, hormone signal transduction, antioxidant systems and transcription regulator activity particularly related to senescence. Moreover, we analyzed eight genes related to terpenoid biosynthesis using qRT-PCR to study the changes in growth and development patterns in the transgenic plants. Our study shows that transgenic plants show premature senescence.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Adamowski M, Friml J (2015) PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell 27(1):20–32

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Altschul SF, Gish W (1996) Local alignment statistics. Methods Enzymol 266:460–480

    CAS  PubMed  Google Scholar 

  3. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Andrianov V, Borisjuk N, Pogrebnyak N, Brinker A, Dixon J, Spitsin S, Golovkin M (2010) Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass. Plant biotechnol J 8(3):277–287

    CAS  PubMed  Google Scholar 

  5. Aoyama T, Hiwatashi Y, Shigyo M, Kofuji R, Kubo M, Ito M, Hasebe M (2012) AP2-type transcription factors determine stem cell identity in the moss Physcomitrella patens. Development 139(17):3120–3129

    CAS  PubMed  Google Scholar 

  6. Bazargani MM, Sarhadi E, Bushehri AAS, Matros A, Mock HP, Naghavi MR, Ehdaie B (2011) A proteomics view on the role of drought-induced senescence and oxidative stress defense in enhanced stem reserves remobilization in wheat. J Proteomics 74(10):1959–1973

    CAS  PubMed  Google Scholar 

  7. Besseau S, Hoffmann L, Geoffroy P, Lapierre C, Pollet B, Legrand M (2007) Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell 19(1):148–162

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Besseau S, Li J, Palva ET (2012) WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. J Exp Bot 63(7):2667–2679

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C, Zhang C (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23(3):873–894

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bruce RJ, West CA (1989) Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor bean. Plant physiol 91(3):889–897

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Vandesompele J (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622

    CAS  PubMed  Google Scholar 

  12. Danner H, Boeckler GA, Irmisch S, Yuan JS, Chen F, Gershenzon J (2011) Four terpene synthases produce major compounds of the gypsy moth feeding-induced volatile blend of populus trichocarpa. Phytochemistry 72(9):897–908

    CAS  PubMed  Google Scholar 

  13. Degenhardt J, Köllner TG, Gershenzon J (2009) Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70(15):1621–1637

    CAS  Google Scholar 

  14. Dudareva N, Andersson S, Orlova I, Gatto N, Reichelt M, Rhodes D, Gershenzon J (2005) The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc Natl Acad Sci USA 102(3):933–938

    CAS  PubMed  Google Scholar 

  15. Green S, Squire CJ, Nieuwenhuizen NJ, Baker EN, Laing W (2009) Defining the potassium binding region in an apple terpene synthase. J Biol Chem 284(284):8661–8669

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Halitschke R, Stenberg JA, Kessler D, Kessler A, Baldwin IT (2008) Shared signals–‘alarm calls’ from plants increase apparency to herbivores and their enemies in nature. Ecol Lett 11(1):24–34

    PubMed  Google Scholar 

  17. Harris MA, Clark J, Ireland A (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32:D258–D261

    CAS  PubMed  Google Scholar 

  18. Himelblau E, Amasino RM (2001) Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence. J Plant Physiol 158(10):1317–1323

    CAS  Google Scholar 

  19. Hong GJ, Xue XY, Mao YB, Wang LJ, Chen XY (2012) Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. Plant Cell 24(6):2635–2648

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang M, Abel C, Sohrabi R, Petri J, Haupt I, Cosimano J (2010) Variation of herbivore-induced volatile terpenes among arabidopsis ecotypes depends on allelic differences and subcellular targeting of two terpene synthases, TPS02 and TPS03. Plant Physiol 153(3):1293–1310

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Huelin FE, Murray KE (1966) Alpha-farnesene in the natural coating of apples. Nature 210(5042):1260–1261

    CAS  PubMed  Google Scholar 

  22. Iijima Y, Davidovich-Rikanati R, Fridman E, Gang DR, Bar E, Lewinsohn E, Pichersky E (2004) The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes and phenylpropenes in the peltate glands of three cultivars of basil. Plant Physiol 136(3):3724–3736

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Hirakawa M (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34(suppl 1):D354–D357

    CAS  PubMed  Google Scholar 

  24. Kang JH, McRoberts J, Shi F, Moren JE, Jones AD, Howe GA (2014) The flavonoid biosynthetic enzyme chalcone isomerase modulates terpenoid production in glandular trichomes of tomato. Plant Physiol 164(3):1161–1174

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kännaste A, Vongvanich N, Borg-Karlson AK (2008) Infestation by a Nalepella, species induces emissions of α-and β-farnesenes, linalool and aromatic compounds in Norway spruce clones of different susceptibility to the large pine weevil. Arthropod-Plant Inte 2(1):31–41

    Google Scholar 

  26. Lange BM, Rujan T, Martin W, Croteau R (2000) Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. P Natl Acad Sci 97(24):13172–13177

    CAS  Google Scholar 

  27. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome biol 10(3):25

    Google Scholar 

  28. Liang Z, Ma D, Tang L, Hong Y, Luo A, Zhou J, Dai X (1997) Expression of the spinach betaine aldehyde dehydrogenase (BADH) gene in transgenic tobacco plants. Chin J Biotechnol 13(3):153–159

    CAS  PubMed  Google Scholar 

  29. Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115

    CAS  PubMed  Google Scholar 

  30. Lin J, Wang D, Chen X (2016) An (E, E)-α-farnesene synthase gene of soybean has a role in defence against nematodes and is involved in synthesizing insect-induced volatiles. Plant Biotechnol J 15(1):1–10

    Google Scholar 

  31. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively. Arabidopsis Plant Cell 10(8):1391–1406

    CAS  PubMed  Google Scholar 

  32. Liu Y, Wang L, Liu H, Zhao R, Liu B, Fu Q (2016) The antioxidative defense system is involved in the premature senescence in transgenic tobacco (Nicotiana tabacum nc89). Biol Res 49(1):30

    PubMed  PubMed Central  Google Scholar 

  33. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ljung K (2013) Auxin metabolism and homeostasis during plant development. Development 140(5):943–950

    CAS  PubMed  Google Scholar 

  35. Martin DM, Aubourg S, Schouwey MB, Daviet L, Schalk M, Toub O (2010) Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, flcdna cloning, and enzyme assays. BMC Plant Biol 10(1):226–248

    PubMed  PubMed Central  Google Scholar 

  36. Mercke P, Kappers IF, Verstappen FW, Vorst O, Dicke M, Bouwmeester HJ (2004) Combined transcript and metabolite analysis reveals genes involved in spider mite induced volatile formation in cucumber plants. Plant Physiol 135(4):2012–2024

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Barrell D, Bateman A, Bucher P (2003) The InterPro Database, 2003 brings increased coverage and new features. Nucleic Acids Res 31(1):315–318

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Nara A, Takeuchi Y (2002) Ethylene evolution from tobacco leaves irradiated with UV-B. J Plant Res 115(4):247–253

    PubMed  Google Scholar 

  39. Noushina I, Khan NA, Antonio F, Alice T, Alessandra F, Khan MIR (2017) Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Front Plant Sci 08(9):475

    Google Scholar 

  40. Pechous SW, Whitaker BD (2004) Cloning and functional expression of an (E, E)-α-farnesene synthase c DNA from peel tissue of apple fruit. Planta 219(1):84

    CAS  PubMed  Google Scholar 

  41. Phillips MA, D’Auria JC, Gershenzon J, Pichersky E (2008) The Arabidopsis thaliana type I isopentenyl diphosphate isomerases are targeted to multiple subcellular compartments and have overlapping functions in isoprenoid biosynthesis. Plant Cell 20(3):677–696

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Robert CAM, Erb M, Hiltpold I, Hibbard BE, Gaillard MDP, Bilat J, Zwahlen C (2013) Genetically engineered maize plants reveal distinct costs and benefits of constitutive volatile emissions in the field. Plant Biotechnol J 11(5):628–639

    CAS  PubMed  Google Scholar 

  43. Rodríguez-Concepción M, Boronat A (2002) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 130(3):1079–1089

  44. Rupasinghe HPV, Paliyath G, Murr DP (1998) Biosynthesis of alpha-farnesene and its relation to superficial scald development in “Delicious” apples. Am Soc Hortic Sci 11(3):245–248

    Google Scholar 

  45. Schillberg S, Fischer R, Emans N (2003) Molecular farming of recombinant antibodies in plants. CMLS-Cell Mol Life Sci 60(3):433–445

    CAS  Google Scholar 

  46. Sharpe LJ, Brown AJ (2013) Controlling cholesterol synthesis beyond 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). J Biol Chem 288(26):18707–18715

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Gene DEV 12(23):3703–3714

    CAS  PubMed  Google Scholar 

  48. Sutherland ORW, Hutchins RFN (1973) Attraction of newly hatched codling moth larvae (Laspeyresia pomonella) to synthetic stereo-isomers of farnesene. J Insect Physiol 19(3):723–727

    CAS  Google Scholar 

  49. Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278(5338):631–637

    CAS  Google Scholar 

  50. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Rao BS (2003) The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4(1):1

    Google Scholar 

  51. Vranová E, Coman D, Gruissem W (2012) Structure and dynamics of the isoprenoid pathway network. Mol Plant 5(2):318–333

    PubMed  Google Scholar 

  52. Wright LP, Rohwer JM, Ghirardo A, Hammerbacher A, Ortiz-Alcaide M, Raguschke B, Phillips MA (2014) Deoxyxylulose 5-phosphate synthase controls flux through the methylerythritol 4-phosphate pathway in Arabidopsis. Plant Physiol 165(4):1488–1504

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yu Y, Lyu S, Chen D, Lin Y, Chen J, Chen G, Ye N (2017) Volatiles emitted at different flowering stages of jasminum sambac and expression of genes related to α-farnesene biosynthesis. Molecules 22(4):546

    PubMed Central  Google Scholar 

  54. Zdobnov EM, Apweiler R (2001) InterProScan–an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17(9):847–848

    CAS  PubMed  Google Scholar 

  55. Zebelo SA, Matsui K, Ozawa R, Maffei ME (2012) Plasma membrane potential depolarization and cytosolic calcium flux are early events involved in tomato (Solanum lycopersicon) plant-to-plant communication. Plant Sci 196:93–100

    CAS  PubMed  Google Scholar 

  56. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang M, Liu H, Wang Q, Liu SH, Zhang YH (2020) The 3-hydroxy-3-methylglutaryl-coenzyme A reductase 5 gene from Malus domestica enhances oxidative stress tolerance in Arabidopsis thaliana. Plant Physiol Bioch 146:269–277

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 30970256, 31370359).

Author information

Affiliations

Authors

Contributions

Designed the experiments: HL, NC and YHZ. Performed the experiments: HL and NC. Analyzed the data: HL, NC, YL. Wrote the paper: HL, NC and YL.

Corresponding authors

Correspondence to Nini Cheng or Yuanhu Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Liu, Y., Cheng, N. et al. De novo transcriptome assembly of transgenic tobacco (Nicotiana tabacum NC89) with early senescence characteristic. Physiol Mol Biol Plants 27, 237–249 (2021). https://doi.org/10.1007/s12298-021-00953-z

Download citation

Keywords

  • Nicotiana tabacum (NC89)
  • Transcriptome
  • Sesquiterpenes
  • Senescence