Nanotechnology: an efficient approach for rejuvenation of aged seeds

Abstract

Modern agricultural efforts are now in search of an efficient, eco-friendly and sustainable approach for enhanced crop production. Nearly 50–60% of seeds lost occurs due to improper technical handling. Seed deterioration manifests itself as reduction in the rate of germination and growth with increased susceptibility to biotic and abiotic stresses. Furthermore, seed ageing is another economic and scientific issue that is associated with an array of internal (structural, physiological and genetic) and external (storage temperature and relative humidity) factors. Reactive oxygen species (ROS) are believed to be a key player in ageing phenomenon. However, hydrated storage, or ROS blockers are a few of the conventionally used methods to minimize the ageing process. Recently, exogenous applications of different inorganic nanoparticles (metal and metal oxide) are suggested to revitalize and revive aged seeds. Owing to their special properties of nano-size with high surface area they easily penetrate the seed coat. Exposure of nanoparticles has been suggested to neutralize the excess of ROS to a level that initiates hormonal signaling to support early emergence of radicles from the seeds. Nanotechnology has been well explored to enhance the crops nutritional quality, livestock productivity, plant protection from various stressors and in enhancement of seed quality via nanopesticides and nanofertilizers. Aiming at sustainable agriculture practices with fewer inputs, maximum benefits, ecologically safe and compatible technique the nanotechnology is an efficient approach to counteract problems of seed ageing incurring during storage, which is relatively less explored and unresolved conventionally, in general.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Acharya P, Jayaprakasha GK, Crosby KM, Jifon JL, Patil BS (2019) Green-synthesized nanoparticles enhanced seedling growth, yield, and quality of onion (Allium cepa L.). ACS Sustain Chem Eng 7(17): 14580–14590. https://doi.org/10.1021/acssuschemeng.9b02180

  2. Adhikari T, Kundu S, Rao AS (2016) Zinc delivery to plants through seed coating with nano-zinc oxide particles. J Plant Nutr 39(1):136–146. https://doi.org/10.1080/01904167.2015.1087562

    CAS  Article  Google Scholar 

  3. Ambika S, Sujatha K (2016) Organic seed treatment with seaweed nano powders on physiological quality and enzyme activities in aged seeds of pigeon pea. Bioscan 11(1):353–357

    CAS  Google Scholar 

  4. Anandaraj K, Ilakkiya R, Natarajan N (2018) Customizing zinc oxide (ZnO) and silver (Ag) nanoparticles for seed quality enhancement in onion (Allium cepa (Linn) cv. CO (On) 5. Int J Curr Microbiol App Sci 7(11):1522–1530. https://doi.org/10.20546/ijcmas.2018.711.175

  5. Anandaraj K, Natarajan N (2017) Effect of nanoparticles for seed quality enhancement in onion [Allium cepa (Linn) cv. CO (On)] 5. Int J Curr Microbiol App Sci 6:3714–3724. https://doi.org/10.20546/ijcmas.2017.611.435

  6. Anjum NA, Sofo A, Scopa A, Roychoudhury A, Gill SS, Iqbal M, Lukatkin AS, Pereira E, Duarte AC, Ahmad I (2015) Lipids and proteins-major targets of oxidative modifications in abiotic stressed plants. Environ Sci Pollut Res 22(6):4099–4121. https://doi.org/10.1007/s11356-014-3917-1

    CAS  Article  Google Scholar 

  7. Aslani F, Bagheri S, Julkapli NM, Juraimi AS, Hashemi FSG, Baghdadi A (2014) Effects of engineered nanomaterials on plants growth: an overview. Sci World J 28:948. https://doi.org/10.1155/2014/641759

    Article  Google Scholar 

  8. Barreto LC, Garcia QS (2017) Accelerated ageing and subsequent imbibitions affect seed viability and the efficiency of antioxidant system in macaw palm seeds. Acta Physiol Plant 39(3):72. https://doi.org/10.1007/s11738-017-2367-z

    CAS  Article  Google Scholar 

  9. Bucholc M, Buchowicz J (1992) Synthesis of extrachromosomal DNA and telomere-related sequences in germinating wheat embryos. Seed Sci Res 2(3):141–146. https://doi.org/10.1017/S0960258500001264

    CAS  Article  Google Scholar 

  10. Carvajal M, Alcaraz CF (1998) Why titanium is a beneficial element for plants. J Plant Nutr 21(4):655–664. https://doi.org/10.1080/01904169809365433

    CAS  Article  Google Scholar 

  11. Chandra J, Chauhan R, Korram J, Satnami ML, Keshavkant S (2020a) Silica nanoparticle minimizes aluminium imposed injuries by impeding cytotoxic agents and over expressing protective genes in Cicer arietinum. Sci Hortic 260:108885. https://doi.org/10.1016/j.scienta.2019.108885

    CAS  Article  Google Scholar 

  12. Chandra J, Dubey M, Keshavkant S (2020b) Influence of protein damage and proteasome gene expression on the longevity of recalcitrant Madhuca latifolia Roxb. seeds. Botany 98(3):173–183. https://doi.org/10.1139/cjb-2019-0130

  13. Chandra J, Keshavkant S (2018) Desiccation-induced ROS accumulation and lipid catabolism in recalcitrant Madhuca latifolia seeds. Physiol Mol Biol Plants 24(1):75–87. https://doi.org/10.1007/s12298-017-0487-y

    CAS  Article  PubMed  Google Scholar 

  14. Chandra J, Parkhey S, Keshavkant S (2018) Ageing-regulated changes in genetic integrity of two recalcitrant seeded species having contrasting longevity. Trees 32(1):109–123. https://doi.org/10.1007/s00468-017-1615-6

    Article  Google Scholar 

  15. Chandrasekaran U, Luo X, Wang Q, Shu K (2020) Are there unidentified factors involved in the germination of nanoprimed seeds? Front Plant Sci 11:832. https://doi.org/10.3389/fpls.2020.00832

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chookhongkha N, Sopondilok T, Photchanachai S (2012) Effect of chitosan and chitosan nanoparticles on fungal growth and chilli seed quality. In I international conference on postharvest pest and disease management in exporting horticultural crops-PPDM2012 973, pp. 231–237

  17. Damir I, Mavi K (2008) Controlled deterioration and accelerated ageing test to estimate the relative storage potential of curcurbit seed lots. Hortscience 43(5):1544–1548. https://doi.org/10.21273/HORTSCI.43.5.1544

  18. Dangi S, Biradarpatil NK, Deshpande VK, Hunje R, Mogali S (2019) Effect of seed treatment with nanoparticles on seed storability of soybean. Int J Curr Microbiol App Sci 8(11):2535–2545. https://doi.org/10.20546/ijcmas.2019.811.293

  19. De Souza TAJ, Souza LRR, Franchi LP (2019) Silver nanoparticles: An integrated view of green synthesis methods, transformation in the environment, and toxicity. Ecotoxicol Environ Saf 171:691–700. https://doi.org/10.1016/j.ecoenv.2018.12.095

    CAS  Article  Google Scholar 

  20. Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot 109:212–228. https://doi.org/10.1016/j.envexpbot.2014.06.021

    CAS  Article  Google Scholar 

  21. Divya K, Jisha MS (2018) Chitosan nanoparticles preparation and applications. Environ Chem Lett 16(1):101–112. https://doi.org/10.1007/s10311-017-0670-y

    CAS  Article  Google Scholar 

  22. Divya K, Vijayan S, Nair SJ, Jisha MS (2019) Optimization of chitosan nanoparticle synthesis and its potential application as germination elicitor of Oryza sativa L. Int J Biol Macromol 124:1053–1059. https://doi.org/10.1016/j.ijbiomac.2018.11.185

    CAS  Article  PubMed  Google Scholar 

  23. Fu YB, Ahmed Z, Diederichsen A (2015) Towards a better monitoring of seed ageing under ex-situ seed conservation. Conserv Physiol 3(1):1–16. https://doi.org/10.1093/conphys/cov026

    CAS  Article  Google Scholar 

  24. Gandomani VM, Omidi H (2017) The effect of nano-particle silicon dioxide (SiO2) on improving soybean seed germination under accelerated aging conditions. SST 6(1):193–203. https://doi.org/10.22034/ijsst.2017.113683

  25. Gautam S, Misra P, Shukla PK, Ramteke PW (2016) Effect of copper oxide nanoparticle on the germination, growth and chlorophyll in soybean (Glycine max L.). Vegetos 29:157–160. https://doi.org/10.5958/2229-4473.2016.00050.1

    Article  Google Scholar 

  26. Ghafari H, Razmjoo J (2013) Effect of foliar application of nano-iron oxidase, iron chelate and iron sulphate rates on yield and quality of wheat. Intl J Agron Plant Prod 4(11):2997–3003

    Google Scholar 

  27. Harish M (2017) Influence of seed treatment with nanoparticles on morpho physiological and biochemical changes in groundnut (Arachis hypogaea L.). Doctoral dissertation, University of Agricultural Sciences GKVK, Bengaluru

  28. Harish MS, Gowda R, Nethra N (2019) Standardization of nano particles for enhancing groundnut seed quality Cv. ICGV-91114. Int J Pharmacogn Phytochem 8(1):2208–2212

  29. Hoai PT, Tyerman SD, Schnell N, Tucker M, McGaughey SA, Qiu J, Groszmann M, Byrt CS (2020) Deciphering aquaporin regulation and roles in seed biology. J Exp Bot 71(6):1763–1773. https://doi.org/10.1093/jxb/erz555

    CAS  Article  PubMed  Google Scholar 

  30. Jaganathan GK, Liu B (2014) Traditional method of storing Pigeonpea (Cajanus cajan L.) seeds using red soil. Res J Recent Sci 3(10):48–52

  31. Katiyar P, Yadu B, Korram J, Satnami ML, Kumar M, Keshavkant S (2020) Titanium nanoparticles attenuates arsenic toxicity by up-regulating expressions of defensive genes in Vigna radiata L. J Environ Sci (China) 92:18–27. https://doi.org/10.1016/j.jes.2020.02.013

    Article  Google Scholar 

  32. Keshavkant S, Sahu B, Parkhey S (2013) Artificial ageing induced metabolic changes in Cicer arietinum seeds: ROS catabolism, lipid peroxidation, protein carbonylation, nucleic acid integrity and antioxidants. Lambert Academic Publishing, Germany

    Google Scholar 

  33. Khan J, Chandra J, Xalxo R, Korram J, Satnami ML, Keshavkant S (2020) Amelioration of ageing associated alterations and oxidative inequity in seeds of Cicer arietinum by silver nanoparticles. J Plant Growth Regul. https://doi.org/10.1007/s00344-020-10193-2

    Article  Google Scholar 

  34. Korishettar P, Vasudevan SN, Shakuntala NM, Doddagoudar SR, Hiregoudar S, Kisan B (2017) Influence of seed polymer coating with Zn and Fe nanoparticles on storage potential of pigeonpea seeds under ambient conditions. J Appl Nat Sci 9(1):186–191. https://doi.org/10.31018/jans.v9i1.1169

  35. Kumar GD, Raja K, Natarajan N, Govindaraju K, Subramanian KS (2020b) Invigouration treatment of metal and metal oxide nanoparticles for improving the seed quality of aged chilli seeds (Capsicum annum L.). Mater Chem Phys 242:122492. https://doi.org/10.1016/j.matchemphys.2019.122492

  36. Kumar VK, Muthukrishnan S, Rajalakshmi R (2020a) Phytostimulatory effect of phytochemical fabricated nanosilver (AgNPs) on Psophocarpus tetragonolobus (L.) DC. seed germination: An insight from antioxidative enzyme activities and genetic similarity studies. Curr Plant Biol 23:100158. https://doi.org/10.1016/j.cpb.2020.100158

  37. Kurek K, Plitta-Michalak B, Ratajczak E (2019) Reactive oxygen species as potential drivers of the seed aging process. Plants 8(6):174. https://doi.org/10.3390/plants8060174

    CAS  Article  PubMed Central  Google Scholar 

  38. Li R, He J, Xie H, Wang W, Bose SK, Sun Y, Hu J, Yin H (2019) Effects of chitosan nanoparticles on seed germination and seedling growth of wheat (Triticum aestivum L.). Int J Biol Macromol 126:91–100. https://doi.org/10.1016/j.ijbiomac.2018.12.118

    CAS  Article  PubMed  Google Scholar 

  39. Mahakham W, Sarmah AK, Maensiri S, Theerakulpisut P (2017) Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci Rep 7(1):1–21. https://doi.org/10.1038/s41598-017-08669-5

    CAS  Article  Google Scholar 

  40. Mahakham W, Theerakulpisut P, Maensiri S, Phumying S, Sarmah AK (2016) Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. Sci Total Environ 573:1089–1102. https://doi.org/10.1016/j.scitotenv.2016.08.120

    CAS  Article  PubMed  Google Scholar 

  41. Maithreyee MN, Gowda R (2015) Influence of nanoparticles in enhancing seed quality of aged seeds. Mysore J Agric Sci 49(2):310–313

    Google Scholar 

  42. Mbofung GCY, Goggi AS, Leandro LFS, Mullen RE (2012) Effects of storage temperature and relative humidity on viability and vigor of treated soybean seeds. Crop Sci 53(3):1086–1095. https://doi.org/10.2135/cropsci2012.09.0530

    Article  Google Scholar 

  43. Mira S, Pirredda M, MartínSánchez M, Marchessi JE, Martín C (2020) DNA methylation and integrity in aged seeds and regenerated plants. Seed Sci Res. https://doi.org/10.1017/S0960258520000021

    Article  Google Scholar 

  44. Mittler R (2017) ROS are good. Trends Plant Sci 22(1):11–19. https://doi.org/10.1016/j.tplants.2016.08.002

    CAS  Article  PubMed  Google Scholar 

  45. Oenel A, Fekete A, Krischke M, Faul SC, Gresser G, Havaux M, Mueller MJ, Berger S (2017) Enzymatic and non-enzymatic mechanisms contribute to lipid oxidation during seed aging. Plant Cell Physiol 58(5):925–933. https://doi.org/10.1093/pcp/pcx036

    CAS  Article  PubMed  Google Scholar 

  46. Panda D, Mondal S (2020) Seed enhancement for sustainable agriculture: an overview of recent trends. Plant Arch 20(1):2320–2332

    Google Scholar 

  47. Paparella S, Araujo SS, Rossi G, Wijayasinghe M (2015) Seed priming: state of the art and new perspectives. Plant Cell Rep 34(8):1281–1293. https://doi.org/10.1007/s00299-015-1784-y

    CAS  Article  PubMed  Google Scholar 

  48. Parkhey S, Naithani SC, Keshavkant S (2014) Protein metabolism during natural ageing in desiccating recalcitrant seeds of Shorea robusta. Acta Physiol Plant 36(7):1649–1659. https://doi.org/10.1007/s11738-014-1540-x

    CAS  Article  Google Scholar 

  49. Patil NB, Sharanagouda H, Doddagoudar SR, Ramachandra CT, Ramappa KT (2018) Effect of rice husk silica nanoparticles on rice (Oryza sativa L.) seed quality. Int J Curr Microbiol App Sci 7(12):3232–3244. https://doi.org/10.20546/ijcmas.2018.712.374

  50. Prado JP, Krzyzanowski FC, Martins CC, Vieira RD (2019) Physiological potential of soybean seeds and its relationship to electrical conductivity. J Seed Sci 41(4):407–415. https://doi.org/10.1590/2317-1545v41n4214988

    Article  Google Scholar 

  51. Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35(6):905–927. https://doi.org/10.1080/01904167.2012.663443

    CAS  Article  Google Scholar 

  52. Saharan V, Pal A (2016) Chitosan based nanomaterials in plant growth and protection. Springer, New Delhi India

    Google Scholar 

  53. Senthilkumar S (2011) Customizing nanoparticle for the maintenance of seed vigor and viability in black gram (Vigna mungo) cv. VBN 4. M.Sc. Thesis, Tamil Nadu Agricultural University, Coimbatore

  54. Sharma D, Kanchi S, Bisetty K (2019) Biogenic synthesis of nanoparticles: a review. Arab J Chem 12(8):3576–3600. https://doi.org/10.1016/j.arabjc.2015.11.002

    CAS  Article  Google Scholar 

  55. Sheykhbaglou R, Sedghi M, Fathi-Achachlouie B (2018) The effect of ferrous nano-oxide particles on physiological traits and nutritional compounds of soybean (Glycine max L.) seed. An Acad Bras Cienc 90(1):485–494. https://doi.org/10.1590/0001-3765201820160251

    CAS  Article  PubMed  Google Scholar 

  56. Shyla KK, Natarajan N (2014) Customizing zinc oxide, silver and titanium dioxide nanoparticles for enhancing groundnut seed quality. Indian J Sci Technol 7(9):1376–1381

    Article  Google Scholar 

  57. Shyla KK, Natarajan N (2016) Synthesis of inorganic nanoparticles for the enhancement of seed quality in groundnut cv. VRI-2. Adv Res J Crop Improv 7(1):32–39. https://doi.org/10.15740/HAS/ARJCI/7.1/32-39

  58. Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J Biol Sci 21(1):13–17. https://doi.org/10.1016/j.sjbs.2013.04.005

    CAS  Article  PubMed  Google Scholar 

  59. Solberg SO, Yndgaard F, Andreasen C, Von Bothmer R, Loskutov IG, Asdal A (2020) Long-term storage and longevity of orthodox seeds: A systematic review. Front Plant Sci 11:1007. https://doi.org/10.3389/fpls.2020.01007

    Article  PubMed  PubMed Central  Google Scholar 

  60. Solymosi K, Bertrand M (2012) Soil metals, chloroplasts, and secure crop production: a review. Agron Sustain Dev 32(1):245–272. https://doi.org/10.1007/s13593-011-0019-z

    CAS  Article  Google Scholar 

  61. Somasundaram G, Bhaskaran M (2017) Standardization of accelerated ageing duration for screening of rice genotypes for seed longevity. Int J Agric Sci 7:397–404

    Google Scholar 

  62. Tamilkumar P, Sivaji M, Vinoth R, Kumar SS, Natarajen N (2016) Customizing zinc oxide nanoparticles for extending seed vigour and viability in tomato (Lycopersicon esculentum Mill). Int J Agric Sci 12:186–190. https://doi.org/10.5740/HAS/IJAS/12.2/000-000

    Article  Google Scholar 

  63. Varier A, Vari AK, Dadlani M (2010) The subcellular basis of seed priming. Curr Sci 99(4):450–456

    CAS  Google Scholar 

  64. Vellosillo T, Vicente J, Kulasekaran S, Hamberg M, Castresana C (2010) Emerging complexity in reactive oxygen species production and signaling during the response of plants to pathogens. Plant Physiol 154(2):444–448. https://doi.org/10.1104/pp.110.16127

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Verma SK, Das AK, Gantait S, Kumar V, Gurel E (2019) Applications of carbon nanomaterials in the plant system: a perspective view on the pros and cons. Sci Total Environ 667:485–499. https://doi.org/10.1016/j.scitotenv.2019.02.409

    CAS  Article  PubMed  Google Scholar 

  66. Verma SK, Das AK, Patel MK, Shah A, Kumar V, Gantait S (2018) Engineered nanomaterials for plant growth and development: a perspective analysis. Sci Total Environ 630:1413–1435. https://doi.org/10.1016/j.scitotenv.2018.02.313

    CAS  Article  PubMed  Google Scholar 

  67. Vijay D, Dadlani M, Kumar PA, Panguluri SK (2009) Molecular marker analysis of differentially aged seeds of soybean and safflower. Plant Mol Biol Rep 27(3):282–291. https://doi.org/10.1007/s11105-008-0085-9

    CAS  Article  Google Scholar 

  68. Vijayalakshmi V, Ramamoorthy K, Natarajan N (2018) Amelioration of aged tomato seeds through nano sized organic particles. J Pharmacogn Phytochem 7:402–406

    CAS  Google Scholar 

  69. Vijayalakshmi V, Ramamoorthy K, Natarajan N (2018) TiO2 Nano particles on extending seed vigour and viability of naturally aged maize (Zea mays L.) Seeds. Int J Pharmacogn Phytochem 7(1):2221–2224

    CAS  Google Scholar 

  70. Wang L, Li X, Zhang G, Dong J, Eastoe J (2007) Oil-in water nanoemulsions for pesticide formulations. J Colloid Interface Sci 314:230–235. https://doi.org/10.1016/j.jcis.2007.04.079

    CAS  Article  PubMed  Google Scholar 

  71. Wang T, JiaoY CQ, Yu X (2015) Gold nanoparticles: synthesis and biological applications. Nano Life 5(03):1542007. https://doi.org/10.1142/S1793984415420076

    CAS  Article  Google Scholar 

  72. Wawrzyniak MK, Kalemba EM, Ratajczak E, Chmielarz P (2020) Oxidation processes related to seed storage and seedling growth of Malus sylvestris, Prunus avium and Prunus padus. PLoS ONE 15(6):e0234510. https://doi.org/10.1371/journal.pone.0234510

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. Xia F, Chen L, Sun Y, Mao P (2015) Relationships between ultrastructure of embryo cells and biochemical variations during ageing of oat (Avena sativa L.) seeds with different moisture content. Acta Physiol Plant 37(4):89–100. https://doi.org/10.1007/s11738-015-1825-8

    CAS  Article  Google Scholar 

  74. Xu ML, Zhu YG, Gu KH, Zhu JG, Yin Y, Ji R, Du WC, Guo HY (2019) Transcriptome reveals the rice response to elevated free air CO2 concentration and TiO2 nanoparticles. Environ Sci Technol 53(20):11714–11724. https://doi.org/10.1021/acs.est.9b02182

    CAS  Article  PubMed  Google Scholar 

  75. Yin X, He D, Gupta R, Yang P (2015) Physiological and proteomic analyses on artificially aged Brassica napus seed. Front Plant Sci 6:112. https://doi.org/10.3389/fpls.2015.00112

    Article  PubMed  PubMed Central  Google Scholar 

  76. Younis ME, Abdel-Aziz HMM, Heikal YM (2019) Nanopriming technology enhances vigor and mitotic index of aged Vicia faba seeds using chemically synthesized silver nanoparticles. S Afr J Bot 125:393–401. https://doi.org/10.1016/j.sajb.2019.08.018

    CAS  Article  Google Scholar 

  77. Yugandhar P, Savithramma N (2013) Green synthesis of calcium carbonate nanoparticle and their effect on seed germination and seedling growth of vigna mungo (L.) Hepper. Intl J Adv Res 1(8):89–103

    Google Scholar 

  78. Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104(1):83–91. https://doi.org/10.1385/BTER:104:1:083

    CAS  Article  PubMed  Google Scholar 

  79. Zinsmeister J, Leprince O, Buitink J (2020) Molecular and environmental factors regulating seed longevity. Biochem J 477(2):305–323. https://doi.org/10.1042/BCJ20190165

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Pt. Ravishankar Shukla University, Raipur, for awarding Research Fellowship (No. 1528/Finance-Scholarship/2020, dated 20.05.2020) to Rasleen Kaur. The authors would also like to thank Pt. Ravishankar Shukla University, Raipur and University Grants Commission, New Delhi, for awarding fellowship to Jipsi Chandra under Research Fellowship (No. 79/8/Fin.Sch/2014, dated 16.04.14) and National Fellowship for students of Other Backward Classes (F./2016-17/NFO-2015-17-OBC-CHH-27902) respectively.

Funding

The authors would like to thank Pt. Ravishankar Shukla University, Raipur, for awarding Research Fellowship (No. 1528/Finance-Scholarship/2020, dated 20.05.2020) to Rasleen Kaur. The authors would also like to thank Pt. Ravishankar Shukla University, Raipur, and University Grants Commission, New Delhi, for awarding fellowship to Jipsi Chandra under Research Fellowship (No. 79/8/Fin.Sch/2014, dated 16.04.14), and National Fellowship for students of Other Backward Classes (F./2016–17/NFO-2015–17-OBC-CHH-27902) respectively.

Author information

Affiliations

Authors

Contributions

S. Keshavkant conceptualized the topic, and finalized the manuscript draft. Rasleen Kaur and Jipsi Chandra gathered information and drafted the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to S. Keshavkant.

Ethics declarations

Conflict of interest

Authors have no conflict of interest.

Ethics approval

Not Applicable.

Consent to participate

Not Applicable.

Consent for publication

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaur, R., Chandra, J. & Keshavkant, S. Nanotechnology: an efficient approach for rejuvenation of aged seeds. Physiol Mol Biol Plants 27, 399–415 (2021). https://doi.org/10.1007/s12298-021-00942-2

Download citation

Keyword

  • Ageing
  • Deteriorative reactions
  • Nanoparticles
  • Oxidative stress
  • ROS