Chromium stress induced oxidative burst in Vigna mungo (L.) Hepper: physio-molecular and antioxidative enzymes regulation in cellular homeostasis

Abstract

Vigna mungo (L.) Hepper commonly known as blackgram is an important legume crop with good quality dietary proteins and vitamins. Low production of blackgram in the chromium rich soil of Odisha is a serious concern against its demand. Chromium (VI) was tested on V. mungo var. B3-8-8 at 100, 150, 200, 250 and 300 µM concentration on growth, anti-oxidative enzymes and chromium content at 15, 30 and 45 d of treatments. Seed germination and growth decreased with increase dose and duration. Cr uptake induced oxidative burst with significant increase of osmolytes was observed in cell at lower doses but failed to adjust homeostasis at higher dose. Increase of GPX and SOD and decrease of CAT was observed as dose dependent. Increased protein content was detected in < 200 µM Cr concentration whereas, significant decrease of protein was noted thereafter. Down regulation of proteins (29.2 kDa and 32.6 kDa) was observed at > 250 µM of Cr. Total Cr uptake was greater in root than in shoot which might be due to poor translocation of heavy metal or detoxification. Thus, blackgram was able to maintain homeostasis at lower concentrations of Cr by activating the cascade of enzymes following cellular detoxification mechanism.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abdelmoteleb A, Troncoso R, Gonzalez T, González D (2017) Antifungical activity of autochthonous Bacillus subtilis isolated from Prosopis juliflora against phytopathogenic fungi. Mycobiol 45:385–391. https://doi.org/10.5941/MYCO.2017.45.4.385

    Article  Google Scholar 

  2. Adrees M, Ali S, Iqbal M, Bharwana SA, Siddiqi Z, Farid M, Ali Q, Saeed R, Rizwan M (2015) Mannitol alleviates chromium toxicity in wheat plants in relation to growth, yield, stimulation of anti-oxidative enzymes, oxidative stress and Cr uptake in sand and soil media. Ecotoxicol Environ Saf 122:1–8

    CAS  PubMed  Google Scholar 

  3. Ali S, Bai P, Zeng F (2011) The ecotoxicological and interactive effects of chromium and aluminum on growth, oxidative damage and antioxidant enzymes on two barley genotypes differing in Al tolerance. Environ Exp Bot 70:185–191

    CAS  Google Scholar 

  4. Ali S, Bharwana SA, Rizwan M, Farid M, Kanwal S, Ali Q, Ibrahim M, Gill RA, Khan MD (2015) Fulvic acid mediates chromium (Cr) tolerance in wheat (Triticum aestivum L.) through lowering of Cr uptake and improved antioxidant defense system. Environ Sci Poll Res 22:10601–10609

    CAS  Google Scholar 

  5. Anjum SA, Ashraf U, Khan I, Tanveer M, Saleem MF, Wang L (2016) Aluminum and chromium toxicity in maize: implications for agronomic attributes, net photosynthesis, physio-biochemical oscillations, and metal accumulation in different plant parts. Water, Air Soil Pollut 227:326–330

    Google Scholar 

  6. Anjum SA, Ashraf U, Khan I, Tanveer M, Shahid M, Shakoor A, Wang L (2017) Phyto-toxicity of chromium in maize: oxidative damage, osmolyte accumulation, anti-oxidative defense and chromium uptake. Pedosphere 27:262–273

    CAS  Google Scholar 

  7. Arias A, Peralta-Videa JR, Ellzey JT, Viveros MN, Ren M, Mokgalaka NS, Castillo-Michel H, Gardea-Torresdey JL (2011) Plant growth and metal distribution in tissues of Prosopis juliflora-velutina grown on chromium-contaminated soil in the presence of Glomus desertícola. Environ Sci Technol 44:7272–7279. https://doi.org/10.1021/es1008664

    CAS  Article  Google Scholar 

  8. Arnon DI (1949) Copper enzymes in isolated chloroplasts polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Babu TN, Varaprasad D, Bindu YH, Kumari MK, Dakshayani L, Reddy MC, Chandrasekhar T (2014) Impact of heavy metals (Cr, Pb and Sn) on in vitro seed germination and seedling growth of green gram (Vigna radiata (L.) R. Wilczek). Curr Trends Biotechnol Pharm 8:160–165

    Google Scholar 

  10. Babula P, Adam V, Opatrilova R, Zehnalek J, Havel L, Kizek R (2008) Uncommon heavy metals, metalloids and their plant toxicity: a review. Environ Chem Lett 6:189–213

    CAS  Google Scholar 

  11. Bates LS, Waldran RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–208

    CAS  Google Scholar 

  12. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assay applicable to polyacrylamide gels. Anal Biochem 44:276–287

    CAS  Google Scholar 

  13. Beyer WF, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566

    CAS  PubMed  Google Scholar 

  14. Birecka H, Garraway MO (1975) Corn leaf isoperoxide reaction to mechanical injury and infection with Helminthosporium maydis. Plant Physiol 61:561–566

    Google Scholar 

  15. Bishehkolaei R, Fahimi H, Saadatmand S, Nejadsattari T, Lahouti M, Yazdi FT (2011) Ultrastructural localisation of chromium in Ocimum basilicum. Turk J Bot 35:261–268

    CAS  Google Scholar 

  16. Caldelas C, Bort J, Febrero A (2012) Ultrastructure and subcellular distribution of Cr in Iris pseudacorus L. using TEM and X-ray microanalysis. Cell Biol Toxicol 28:57–68

    CAS  PubMed  Google Scholar 

  17. Cary EE, Allaway WH, Olson OE (1977) Control of chromium concentrations in food plants. 1. Absorption and translocation of chromium by plants. J Agric Food Chem 25:300–304. https://doi.org/10.1021/jf60210a048

    CAS  Article  PubMed  Google Scholar 

  18. Chinnaswamy A, Coba de la Peña T, Stoll A, de la Peña Rojo D, Bravo J, Rincón A, Lucas MM, Pueyo JJ (2018) A nodule endophytic Bacillus megaterium strain isolated from Medicago polymorpha enhances growth, promotes nodulation by Ensifer medicae and alleviates salt stress in alfalfa plants. Ann Appl Biol 172:295–308. https://doi.org/10.1111/aab.12420

    CAS  Article  Google Scholar 

  19. DalCorso G (2012) Heavy metal toxicity in plants. In: Furini A (ed) Plants and heavy metals. Springer Briefs in Molecular Science, Springer, Dordrecht, pp 1–25

    Google Scholar 

  20. Davies FT, Puryear JD, Newton RJ, Egilla JN, Grossi JAS (2002) Mycorrhizal fungi increase chromium uptake by sunflower plants: influence on tissue mineral concentration, growth and gas exchange. J Plant Nutr 25:2389–2407

    CAS  Google Scholar 

  21. De Oliveira LM, Gress J, De J, Rathinasabapathi B, Marchi G, Chen Y, Ma LQ (2016) Sulfate and chromate increased each other’s uptake and translocation in As-hyperaccumulator Pteris vittata. Chemosphere 147:36–43

    PubMed  Google Scholar 

  22. Diwan H, Khan I, Ahmad A, Iqbal M (2010) Induction of phytochelatins band antioxidant defense system in Brassica juncea and Vigna radiata in response to chromium treatments. Plant Growth Regul 61:97–107

    CAS  Google Scholar 

  23. DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    CAS  Google Scholar 

  24. Duhan JS (2012) Chromium stress on peroxidase, ascorbate peroxidase and acid invertase in pea (Pisum sativum L.) seedling. Int J Biotechnol Mol Biol Res 3:15–21

    Google Scholar 

  25. Eleftheriou E, Adamakis I-D, Panteris E, Fatsiou M (2015) Chromium-induced ultrastructural changes and oxidative stress in roots of Arabidopsis thaliana. Int J Mol Sci 16:15852–15871

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Epstein E (1972) Mineral nutrition of plants: principles and perspectives. John Wiley and Sons, London, p 412

    Google Scholar 

  27. Fahad S, Rehman A, Shahzad B, Tanveer M, Saud S, Kamran M, Ihtisham M, Khan SU, Turan V, Ur Rahman MH (2019) Rice responses and tolerance to metal/metalloid toxicity. In: Hasanuzzaman M, Fujita M, Nahar K, Biswas JK (eds) Advances in rice research for abiotic stress tolerance. Woodhead Publishing, Cambridge, UK, pp 299–312

    Google Scholar 

  28. Feierabend J, Schaan C, Hertwig B (1992) Photoinactivation of catalase occurs under both high and low temperature stress conditions and accompanies photoinhibition of photosystem II. J Plant Physiol 110:1554–1561

    Google Scholar 

  29. Ganesh KS, Sundaramoorthy P, Chidambaram ALA (2006) Chromium toxicity effect on black gram, soybean and paddy. Poll Res 25:257–261

    Google Scholar 

  30. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    CAS  PubMed  Google Scholar 

  31. Gossett DR, Millholon EP, Lucas MC (1994) Antioxidant response to NaCl stress in salt tolerant and salt sensitive cultivars of cotton. Crop Sci 34:706–714

    CAS  Google Scholar 

  32. Gupta D, Huang H, Yang X, Razafindrabe B, Inouhe M (2010) The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione. J Hazard Mater 177:437–444

    CAS  PubMed  Google Scholar 

  33. Gustin JL, Loureiro ME, Kim D, Na G, Tikhonova M, Salt DE (2009) MTP1-dependent Zn sequestration into shoot vacuoles suggests dual roles in Zn tolerance and accumulation in Zn-hyperaccumulating plants. Plant J Cell Mol Biol 57:1116–1127. https://doi.org/10.1111/j.1365-313X.2008.03754.x

    CAS  Article  Google Scholar 

  34. Hoagland DR, Arnon HI (1950) The water-culture method for growing plants without soil. Calif Exp Agric Station Circ 347:1–32

    Google Scholar 

  35. Hu J, Deng Z, Wang B, Zhi Y, Pei B, Zhang G, Luo M, Huang B, Wu W, Huang B (2015) Influence of heavy metals on seed germination and early seedling growth in Crambe abyssinica, a potential industrial oil crop for phytoremediation. American J Plant Sci 6:150–156

    Google Scholar 

  36. Imtiaz M, Mushtaq MA, Rizwan MS, Arif MS, Yousaf B, Ashraf M, Shuanglian X, Rizwan M, Mehmood S, Tu S (2016) Comparison of antioxidant enzyme activities and DNA damage in chickpea (Cicer arietinum L.) genotypes exposed to vanadium. Environ Sci Pollut Res 23:19787–19796

    CAS  Google Scholar 

  37. John RP, Ahmad K, Gadgil S (2009) Heavy metal toxicity: Effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. Int J Plant Prod 3:65–76

    CAS  Google Scholar 

  38. Kabata-Pendias A (2010) Trace elements in soils and plants, 4th edn. CRC Press, Boca Raton. https://doi.org/10.1201/b10158

    Google Scholar 

  39. Kannaiyan S (1999) Bioresearches technology for sustainable agriculture. Associated Publishing Company, New Delhi, p 422

    Google Scholar 

  40. Karuppanapandian T, Manoharan K (2008) Uptake and translocation of tri-and hexavalent chromium and their effects on black gram (Vigna mungo L. Hepper cv. Co4) roots. J Plant Biol 51:192–201

    CAS  Google Scholar 

  41. Kaur N, Nayyar H (2013) Heavy metal toxicity to food legumes: effects, antioxidative defense and tolerance mechanisms. J Food Legumes 26:1–18

    Google Scholar 

  42. Khanna K, Jamwal VL, Sharma A, Gandhi SG, Ohri P, Bhardwaj R, Al-Huqail AA, Siddiqui MH, Ali HM, Ahmad P (2019) Supplementation with plant growth promoting rhizobacteria (PGPR) alleviates cadmium toxicity in Solanum lycopersicum by modulating the expression of secondary metabolites. Chemosphere 230:628–639

    CAS  PubMed  Google Scholar 

  43. Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J Cell Mol Biol 50:207–218. https://doi.org/10.1111/j.1365-313X.2007.03044.x

    CAS  Article  Google Scholar 

  44. Kondo N, Kawashima M (2000) Enhancement of the tolerance to oxidative stress in cucumber (Cucumis sativus L.) seedlings by UV-B irradiation: possible involvement of phenolic compounds and antioxidative enzymes. J Plant Res 113:311–317

    CAS  Google Scholar 

  45. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    CAS  PubMed  Google Scholar 

  46. Lee S, Moon JS, Ko T-S, Petros D, Goldsbrough PB, Korban SS (2003) Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131:656–663

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lowry OH, Rosenberg NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin Phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  48. Lu J, Yang F, Wang S, Ma H, Liang J, Chen Y (2017) Co-existence of rhizobia and diverse non-rhizobial bacteria in the rhizosphere and nodules of Dalbergia odorifera seedlings inoculated with Bradyrhizobium elkanii, Rhizobium multihospitium–like and Burkholderia pyrrocinia–like strains. Front Microbiol 8:2255. https://doi.org/10.3389/fmicb.2017.02255

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lushchak VI (2012) Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids 2012:1–26. https://doi.org/10.1155/2012/736837

    CAS  Article  Google Scholar 

  50. Malar S, Sahi SV, Favas P, Perumal V (2014) Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Bot Stud. https://doi.org/10.1186/s40529-014-0054-6

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mallick S, Sinam G, Kumar MR, Sinha S (2010) Interactive effects of Cr and Fe treatments on plants growth, nutrition and oxidative status in Zea mays L. Ecotoxicol Environ Saf 73:987–995. https://doi.org/10.1016/j.ecoenv.2010.03.004

    CAS  Article  PubMed  Google Scholar 

  52. Mangabeira PA, Ferreira AS, de Almeida A-AF, Fernandes VF, Lucena E, Souza VL, dos Santos Júnior AJ, Oliveira AH, Grenier-Loustalot MF, Barbier F (2011) Compartmentalization and ultrastructural alterations induced by chromium in aquatic macrophytes. Biometals 24:1017–1026

    CAS  PubMed  Google Scholar 

  53. Mhamdi A, Hager J, Chaouch S, Queval G, Han Y, Taconnat L, Saindrenan P, Gouia H, Issakidis-Bourguet E, Renou J-P (2010) Arabidopsis Glutathione Reductase1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. Plant Physiol 153:1144–1160

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Mishra V, Srivastava G, Prasad SM (2009) Antioxidant response of bitter gourd (Momordica charantia L.) seedlings to interactive effect of dimethoate and UV-B irradiation. Scientia Hort 120:373–378

    CAS  Google Scholar 

  55. Miyagawa Y, Tamori M, Shigeoka S (2000) Evaluation of the defense system in chloroplasts to photooxidative stress caused by paraquat using transgenic tobacco plants expressing catalase from Escherichia coli. Plant Cell Physiol 41:311–320

    CAS  PubMed  Google Scholar 

  56. Molinari HBC, Marur CJ, Daros E, de Campos MKF, de Carvalho J, Filho JCB, Pereira LFP, Vieira LGE (2007) Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiol Plant 130:218–229

    CAS  Google Scholar 

  57. Mota R, Pereira SB, Meazzini M, Fernandes R, Santos A, Evans CA, De Philippis R, Wright PC, Tamagnini P (2015) Effects of heavy metals on Cyanothece sp. CCY0110 growth, extracellular polymeric substances (EPS) production, ultrastructure and protein profiles. J Proteom 120:75–94

    CAS  Google Scholar 

  58. Mudgal V, Madaan N, Mudgal A (2010) Heavy metals in plants: phytoremediation: plants used to remediate heavy metal pollution. Agric Biol J North Am 1:40–45

    CAS  Google Scholar 

  59. Nelson N (1944) A photometric adaption of the Somogyi’s methods for the determination of glucose. J Biol Chem 153:375–379

    CAS  Google Scholar 

  60. Oliveira H (2012) Chromium as an environmental pollutant: insights on induced plant toxicity. J Bot 2012:1–8. https://doi.org/10.1155/2012/375843

    CAS  Article  Google Scholar 

  61. Paiva LB, de Oliveira JG, Azevedo RA, Ribeiro DR, da Silva MG, Vitoria AP (2009) Ecophysiological responses of water hyacinth exposed to Cr3+ and Cr6+. Environ Exp Bot 65:403–409

    CAS  Google Scholar 

  62. Parida AK, Das AB, Mohanty P (2004) Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes. J Plant Physiol 161:531–542

    CAS  PubMed  Google Scholar 

  63. Patterson BD, Pyne LA, Chen Y, Graham D (1984) An inhibitor of catalase induced by cold-chilling-sensitive plants. Plant Physiol 76:1014–1018

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Poehlman JM (1991) The Mung bean. Oxford and IBH Publishing Co., New Delhi

    Google Scholar 

  65. Potocký M, Pejchar P, Gutkowska M, Jiménez-Quesada MJ, Potocká A, de Dios Alché J, Kost B, Žárský V (2012) NADPH oxidase activity in pollen tubes is affected by calcium ions, signaling phospholipids and Rac/Rop GTPases. J Plant Physiol 169:1654–1663

    PubMed  Google Scholar 

  66. Pourrut B,  Perchet G, Silvestre J, Cecchi M, Guiresse M, Pinelli E (2008) Potential role of NADPH-oxidase in early steps of lead-induced oxidative burst in Vicia faba roots. J Plant Physiol 165(6):571–579

    CAS  PubMed  Google Scholar 

  67. Pourrut B, Shahid M, Douay F, Dumat C, Pinelli E (2013) Molecular mechanisms involved in lead uptake, toxicity and detoxification in higher plants. In: Gupta D, Corpas F, Palma J (eds) Heavy metal stress in plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38469-1_7

    Google Scholar 

  68. Rai V, Vajpayee P, Singh SN, Mehrotra S (2004) Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant Sci 167:1159–1169

    CAS  Google Scholar 

  69. Ramírez V, Baez A, López P, Bustillos R, Villalobos MÁ, Carreño R, Contreras JL, Muñoz Rojas J, Fuentes LE, Martínez J, Munive JA (2019) Chromium hyper-tolerant Bacillus sp. MH778713 assists phytoremediation of heavy metals by Mesquite trees (Prosopis laevigata). Front Microbiol. https://doi.org/10.3389/fmicb.2019.01833

    Article  PubMed  PubMed Central  Google Scholar 

  70. Saif S, Khan MS (2018) Assessment of toxic impact of metals on proline, antioxidant enzymes, and biological characteristics of Pseudomonas aeruginosa inoculated Cicer arietinum grown in chromium and nickel-stressed sandy clay loam soils. Environ Monit Assess 190:290. https://doi.org/10.1007/s10661-018-6652-0

    CAS  Article  PubMed  Google Scholar 

  71. Saminathan B (2013) Effect of chromium studies on germination and biochemical content of black gram. Int J Adv Res 1:216–222

    Google Scholar 

  72. Sethuraman P, Balasubramanian N (2010) Removal of Cr (VI) from aqueous solution using Bacillus subtilis, Pseudomonas aeruginosa and Enterobacter cloacae. Int J Eng Sci 2:1811–1825. https://doi.org/10.3390/ma8125461

    CAS  Article  Google Scholar 

  73. Shafiq M, Iqbal MZ, Mohammad A (2008) Effect of lead and cadmium on germination and seedling growth of Leucaena leucocephala. J Applied Sci Environ Manag 12:61–66

    Google Scholar 

  74. Shahid M, Shamshad S, Rafiq M, Khalid S, Bibi I, Niazi NK, Dumat C, Rashid MI (2017) Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: a review. Chemosphere 178:513–533

    CAS  PubMed  Google Scholar 

  75. Shahzad B, Tanveer M, Hassan W, Shah AN, Anjum SA, Cheema SA, Ali I (2016) Lithium toxicity in plants: Reasons, mechanisms and remediation possibilities: a review. Plant Physiol Biochem 107:104–115. https://doi.org/10.1016/j.plaphy.2016.05.034

    CAS  Article  PubMed  Google Scholar 

  76. Shahzad B, Tanveer M, Che Z, Rehman A, Cheema SA, Sharma A, Song H, Ur Rehman S, Zhaorong D (2018) Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: a review. Ecotoxicol Environ Saf 147:935–944

    CAS  PubMed  Google Scholar 

  77. Shanker AK, Djanaguiraman M, Sudhagar R, Chandrashekar C, Pathmanabhan G (2004) Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata (L.) R. Wilczek. cv CO4) roots. Plant Sci 166:1035–1043

    CAS  Google Scholar 

  78. Sharma DC, Chatterjee C, Sharma CP (1995) Chromium accumulation and its effects on wheat (Triticum aestivum L. cv HD 2204) metabolism. Plant Sci 111:145–151

    CAS  Google Scholar 

  79. Sharma A, Kumar V, Shahzad B, Ramakrishnan M, Sidhu GPS, Bali AS, Handa N, Kapoor D, Yadav P, Khanna K (2019) Photosynthetic response of plants under different abiotic stresses: a review. J Plant Growth Regul 38:1–23

    CAS  Google Scholar 

  80. Sharma A, Kapoor D, Wang J, Shahzad B, Kumar V, Bali AS, Jasrotia S, Zheng B, Yuan H, Yan D (2020) Chromium bioaccumulation and its impacts on plants: an overview. Plants 9:1–100. https://doi.org/10.3390/plants9010100

    CAS  Article  Google Scholar 

  81. Singleton VL, Rossi A (1965) Colorimetry of total phenolics with phosphomolybdic- phosphotungstic acid reagents. American J Env Vitic 16:144–158

    CAS  Google Scholar 

  82. Slatni T, Vigani G, Salah IB, Kouas S, Dell’Orto M, Gouia H (2010) Metabolic changes of iron uptake in nitrogen fixing common bean nodules during iron deficiency. Plant Sci 181:151–158

    Google Scholar 

  83. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. W. H. Freeman and Company, New York, pp 321–356

    Google Scholar 

  84. Somogyi M (1952) Notes on sugar determination. J Biol Chem 195:19–23

    CAS  Google Scholar 

  85. Srivastav A, Stoss J, Hamre K (2011) A Study on enrichment of the rotifer Brachionus “Cayman” with iodine and selected vitamins. Aquaculture 319:430–438

    Google Scholar 

  86. Stambulska UY, Bayliak MM, Lushchak VI (2018) Chromium (VI) toxicity in legume plants: modulation effects of rhizobial symbiosis. BioMed Res Int 3:1–13. https://doi.org/10.1155/2018/8031213

    CAS  Article  Google Scholar 

  87. Sundaramoorthy P, Baskaran L, Chidambaram ALA, Sankar G (2009) Growth and physiological activity of green gram (Vigna radiata L.) under effluent stress. Iran J Environ Health Sci Engg 6:17–22

    Google Scholar 

  88. Sundaramoorthy P, Chidambaram A, Ganesh KS, Unnikannan P, Baskaran L (2010) Chromium stress in paddy: (i) nutrient status of paddy under chromium stress; (ii) phytoremediation of chromium by aquatic and terrestrial weeds. CR Biol 333:597–607

    CAS  Google Scholar 

  89. Taiz L, Zeiger E (2002) Plant physiology. Sinaeur Associates Inc, Sunderland, Massachusetts

    Google Scholar 

  90. Tang M, Mao D, Xu L, Li D, Song S, Chen C (2014) Integrated analysis of miRNA and mRNA expression profiles in response to Cd exposure in rice seedlings. BMC Genom 15:835

    Google Scholar 

  91. Tatiana Z, Yamashiat K, Matsumoto H (1999) Iron deficiency induced changes in ascorbate content and enzyme activities related to ascorbate metabolism in cucumber roots. Plant Cell Physiol 40:273–280

    Google Scholar 

  92. Tawfik AB, Steiner AL (2011) The role of soil ice in land-atmosphere coupling over the United States: a soil moisture-precipitation winter feedback mechanism. J Geophysical Res 116:4402–4410

    Google Scholar 

  93. Thorup OA, Strole WB, Leavell BS (1961) A method for the localization of catalase on starch gels. J Lab Clin Med 58:122–128

    CAS  PubMed  Google Scholar 

  94. Tokunaga TK, Wan J, Hazen TC (2003) Distribution of chromium contamination and microbial activity in soil aggregates. J Environ Qual 32:541–549

    CAS  PubMed  Google Scholar 

  95. Tripathi AK, Gautam M (2007) Biochemical parameters of plants as indicators of air pollution. J Env Biol 28:127–132

    CAS  Google Scholar 

  96. Ullah A, Shahzad B, Tanveer M, Nadeem F, Sharma A, Lee DJ, Rehman A (2019) Abiotic stress tolerance in plants through pre-sowing seed treatments with mineral elements and growth regulators. In: Hasanuzzaman M, Fotopoulos V (eds) Priming and pretreatment of seeds and seedlings: implication in plant stress tolerance and enhancing productivity in crop plants. Springer, Singapore, pp 427–445

    Google Scholar 

  97. Vajpayee P, Rai UN, Ali MB, Tripathi RD, Yadav V, Sinha S, Singh SN (2002) Chromium induced physiologic changes in Vallisneria spiralis L. and its role in phytoremediation of tannery effluent. Bull Environ Contam Toxicol 67:267–272

    Google Scholar 

  98. Viti C, Marchi E, Decorosi F, Giovannetti L (2014) Molecular mechanisms of Cr (VI) resistance in bacteria and fungi. FEMS Microbiol Rev 38:633–659. https://doi.org/10.1111/1574-6976.12051

    CAS  Article  PubMed  Google Scholar 

  99. Wang Y, Nil N (2000) Changes in chlorophyll, ribulose biphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. J Hort Sci Biotech 75:623–627

    CAS  Google Scholar 

  100. Weyemi U, Dupuy C (2012) The emerging role of ROS-generating NADPH oxidase NOX4 in DNA-damage responses. Mutat Res/Rev Mutat Res 751:77–81

    CAS  Google Scholar 

  101. Wu H, Tito N, Giraldo JP (2017) Anionic Cerium Oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano 11:11283–11297. https://doi.org/10.1021/acsnano.7b05723

    CAS  Article  PubMed  Google Scholar 

  102. Xie Y, Fan J, Zhu W, Amombo E, Lou Y, Chen L, Fu J (2016) Effect of heavy metals pollution on soil microbial diversity and bermuda grass genetic variation. Front Plant Sci 7:755. https://doi.org/10.1016/S0016-7061(03)00083-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. Zancan S, Suglia I, La Rocca N, Ghisi R (2008) Effect of UV-B radiation on antioxidant parameters of iron-deficient barley plants. Environ Exp Bot 63:71–79

    CAS  Google Scholar 

  104. Zayed A, Lytle CM, Qian JH, Terry N (1998) Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta 206:293–299

    CAS  Google Scholar 

  105. Zeid IM (2001) Responses of Phaseolus vulgaris to chromium and cobalt treatments. Biol Plant 44:111–115

    CAS  Google Scholar 

Download references

Acknowledgements

The financial assistance received from DST INSPIRE Fellowship (DST/INSPIRE/03/2017/002373; Inspire Fellow No. IF180328) to A. Rath, and the facility used in the Department of Botany, Utkal University developed under UGC-SAP DRS-III and DST-FIST Programme, Government of India are gratefully acknowledged. We acknowledge the support of Central Instrumentation Centre, Orissa University and Agriculture and Technology, Bhubaneswar for use of Inductively Coupled Plasma—Optical Emission Spectrometry (ICP-OES, Perkin Elmer Avio 200, USA) for Cr data analysis on payment basis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anath Bandhu Das.

Ethics declarations

Conflict of interest

We declare that, the manuscript is prepared and approved by us and we do not have any conflict of interest in submitting this paper to this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rath, A., Das, A.B. Chromium stress induced oxidative burst in Vigna mungo (L.) Hepper: physio-molecular and antioxidative enzymes regulation in cellular homeostasis. Physiol Mol Biol Plants 27, 265–279 (2021). https://doi.org/10.1007/s12298-021-00941-3

Download citation

Keywords

  • Antioxidant enzymes
  • Chromium accumulation
  • Hyrdoponic culture
  • Metal induced protein
  • ROS scavenging