The urea transporter DUR3 is differentially regulated by abiotic and biotic stresses in coffee plants

Abstract

The high costs of N fertilizers in the coffee production emphasizes the need to optimize fertilization practices and improve nitrogen use efficiency. Urea is widespread in nature, characterizing itself as a significant source of nitrogen for the growth and development of several organisms. Thus, the characterization of genes involved in urea transport in coffee plants is an important research topic for the sustainable production of this valuable cash crop. In the current study, we evaluated the expression of the DUR3 gene under abiotic and biotic stresses in coffee plants. Here, we show that the expression of a high-affinity urea transporter gene (CaDUR3) was up-regulated by N starvation in leaves and roots of two out of three C. arabica cultivars examined. Moreover, the CaDUR3 gene was differentially expressed in coffee plants under different abiotic and biotic stresses. In plants of cv. IAPAR59, CaDUR3 showed an increased expression in leaves after exposure to water deficit and heat stress, while it was downregulated in plants under salinity. Upon infection with H. vastatrix (coffee rust), the CaDUR3 was markedly up-regulated at the beginning of the infection process in the disease susceptible Catuaí Vermelho 99 in comparison with the resistant cultivar. These results indicate that besides urea acquisition and N-remobilization, CaDUR3 gene may be closely involved in the response to various stresses.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Arnhold E (2013) Package in the R environment for analysis of variance and complementary analyses. Braz J Vet Res Anim Sci 50(6):488–492

    Google Scholar 

  3. Baba VY, Braghini MT, dos Santos TB, de Carvalho K, Soares JDM, Ivamoto-Suzuki ST, Maluf MP, Padilha L, Paccola-Meirelles LD, Pereira LF, Domingues DS (2020) Transcriptional patterns of Coffea arabica L. nitrate reductase, glutamine and asparagine synthetase genes are modulated under nitrogen suppression and coffee leaf rust. PeerJ 8:e8320

    PubMed  PubMed Central  Google Scholar 

  4. Bawin Y, Ruttink T, Staelens A, Haegeman A, Stoffelen P, Mwanga JCIM, Roldán-Ruiz I, Honnay O, Janssens SB (2020) Phylogenomic analysis clarifies the evolutionary origin of Coffea arabica L. bioRxiv. https://doi.org/10.1111/jse.12694

  5. Beier MP, Fujita T, Sasaki K, Kanno K, Ohashi M, Tamura W, Konishi N, Saito M, Imagawa F, Ishiyama K, Miyao A, Yamaya T, Kojima S (2019) The urea transporter DUR3 contributes to rice production under nitrogen-deficient and field conditions. Physiol Plant 167(1):75–89

    CAS  PubMed  Google Scholar 

  6. Bohner A, Kojima S, Hajirezaei M, Melzer M, von Wirén N (2015) Urea retranslocation from senescing Arabidopsis leaves is promoted by DUR3-mediated urea retrieval from leaf apoplast. Plant J 81:377–387

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Box GEP, Cox DR (1964) An analysis of transformations (with discussion). R Stat Soc Ser B Methodol 26:211–252

    Google Scholar 

  8. Bloom AJ (2015) The increasing importance of distinguishing among plant nitrogen sources. Curr Opin Plant Biol 25:10–16

    CAS  PubMed  Google Scholar 

  9. Chaumont F, Tyerman SD (2017) Plant aquaporins from transport to signaling. Springer, Cham

    Google Scholar 

  10. Clark RB (1975) Characterization of phosphatase of intact maize roots. J Agr Food Chem 23:458–460

    CAS  Google Scholar 

  11. Davis AP, Tosh J, Ruch N, Fay MF (2011) Growing coffee: Psilanthus (Rubiaceae) subsumed on the basis of molecular and morphological data; implications for the size, morphology, distribution and evolutionary history of Coffea. Bot J Linn Soc 167:357–377

    Google Scholar 

  12. de Carvalho K, Bespalhok Filho JC, dos Santos TB, de Souza SGH, Vieira LGE, Pereira LFP, Domingues DS (2013) Nitrogen starvation, salt and heat stress in coffee (Coffea arabica L.): identification and validation of new genes for qPCR normalization. Mol Biotechnol 53:315–325

    PubMed  Google Scholar 

  13. De Michele R, Loqué D, Lalonde S, Frommer WB (2012) Ammonium and urea transporter inventory of the Selaginella and Pyscomitrella genomes Front. Plant Sci 3:62

    Google Scholar 

  14. dos Santos TB, Budzinski IG, Marur CJ, Petkowicz CL, Pereira LF, Vieira LG (2011) Expression of three galactinol synthase isoforms in Coffea arabica L. and accumulation of raffinose and stachyose in response to abiotic stresses. Plant Physiol Biochem 49:441–448

    PubMed  Google Scholar 

  15. dos Santos TB, Lima JE, Felicio MS, Soares JDM, Domingues DS (2017) Genome-wide identification, classification and transcriptional analysis of nitrate and ammonium transporters in Coffea. Genet Mol Biol 40:346–359

    PubMed  PubMed Central  Google Scholar 

  16. dos Santos TB, Lima RBD, Nagashima GT, Petkowicz CLDO, Carpentieri-Pípolo V, Pereira LFP, Domingues DS, Vieira LGE (2015) Galactinol synthase transcriptional profile in two genotypes of Coffea canephora with contrasting tolerance to drought. Genet Mol Biol 38(2):182–190

    PubMed  PubMed Central  Google Scholar 

  17. dos Santos TB, Soares JDM, Lima JE, Silva JC, Ivamoto ST, Baba VY, Souza SGH, Lorenzetti APR, Paschoal AR, Meda AR, Nishiyama Júnior MY, De Oliveira ÚC, Mokochinski JB, Guyot R, Junqueira-de-Azevedo ILM, Figueira AVO, Mazzafera P, Júnior OR, Vieira LGE, Pereira LFP, Domingues DS (2019) An integrated analysis of mRNA and sRNA transcriptional profiles in Coffea arabica L. roots: insights on nitrogen starvation responses. Funct Integr Genom 19(1):151–169

    Google Scholar 

  18. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  19. Elberry HM, Majumdar ML, Cunningham TS, Sumrada RA, Cooper TG (1993) Regulation of the urea active transporter gene (DUR3) in Saccharomyces cerevisiae. J Bacteriol 175(15):4688–4698

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Fan X, Naz M, Fan X, Xuan W, Miller AJ, Xu G (2017) Plant nitrate transporters: from gene function to application. J Exp Bot 68:2463–2475

    CAS  PubMed  Google Scholar 

  21. Fridell G (2014) Coffee. Wiley, New York

    Google Scholar 

  22. Gerendás J, Zhu Z, Sttelmacher B (1998) Influence of nitrogen and Ni supply on nitrogen metabolism and urease activity in rice (Oryza sativa L.). J Exp Bot 49:1545–1554

    Google Scholar 

  23. Gupta KJ, Brotman Y, Segu S, Zeier T, Zeier J, Persijn ST, Cristescu SM, Harren FJM, Bauwe H, Fernie AR, Kaiser WM, Mur LAJ (2013) The form of nitrogen nutrition affects resistance against Pseudomonas syringae pv. phaseolicola in tobacco. J Exp Bot 64:553–568

    CAS  PubMed  Google Scholar 

  24. Karamos RE, Hanson K, Stevenson FC (2014) Nitrogen form, time and rate of application, and nitrification inhibitor effects on crop production. Can J Plant Sci 94:425–432

    Google Scholar 

  25. Kojima S, Bohner A, Gassert B, Yuan L, von Wirén N (2007) AtDUR3 represents the major transporter for high-affinity urea transport across the plasma membrane of nitrogen-deficient Arabidopsis roots. Plant J 52:30–40

    CAS  PubMed  Google Scholar 

  26. Lashermes P, Combes MC, Robert J, Trouslot P, D’Hont A, Charrier A (1999) Molecular characterisation and origin of the Coffea arabica L. genome. Mol Gen Genet 261:259–266

    CAS  PubMed  Google Scholar 

  27. Lashermes P, Paczek V, Trouslot P, Combes MC, Couturon E, Charrier A (2000) Single-locus inheritance in the allotetraploid Coffea arabica L. and interspecific hybrid C. arabica x C. canephora. J Hered 91:81–85

    CAS  PubMed  Google Scholar 

  28. Liu LH, Ludewig U, Frommer WB, von Wirén N (2003a) AtDUR3 encodes a new type of high-affinity urea/H + symporter in Arabidopsis. Plant Cell 15:790-800***

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu GW, Sun AL, Li DQ, Athman A, Gilliham M, Liu LH (2015) Molecular identification and functional analysis of a maize (Zea mays) DUR3 homolog that transports urea with high affinity. Planta 241:861–874

    CAS  PubMed  Google Scholar 

  30. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−CT method. Methods 25:402–408

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105:1141–1157

    PubMed  PubMed Central  Google Scholar 

  32. Matiz A, Mioto PT, Mercier H (2019) Urea in plants: metabolic aspects and ecological implications 1–31. In: Progress in botany. Springer, Berlin, Heidelberg

  33. Mérigout P, Lelandais M, Bitton F, Renou JP, Briand X, Meyer C, Daniel-Vedele F (2008) Physiological and transcriptomic aspects of urea uptake and assimilation in Arabidopsis plants. Plant Physiol 147:1225–1238

    PubMed  PubMed Central  Google Scholar 

  34. Mondego JMC, Vidal RO, CarazzolleMF TEK, Parizzi LP, Costa GGL (2011) An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora. BMC Plant Biol 11:30

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Pageau K, Reisdorf-Cren M, Morot-Gaudry JF, Masclaux-Daubress C (2006) The two senescence-related markers, GS1 (cytosolic glutamine synthetase) and GDH (glutamate dehydrogenase), involved in nitrogen mobilization, are differentially regulated during pathogen attack and by stress hormones and reactive oxygen species in Nicotiana tabacum L. leaves. J Exp Bot 57:547–557

    CAS  PubMed  Google Scholar 

  36. R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  37. Roca LF, Romero J, Bohórquez JM, Alcántara E, Fernández-Escobar R, Trapero A (2018) Nitrogen status affects growth, chlorophyll content and infection by Fusicladium oleagineum in olive. Crop Prot 109:80–85

    CAS  Google Scholar 

  38. Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker O, van den Hoff MJB, Moorman AFM (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37:e45

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Scalabrin S, Toniutti L, Di Gaspero G, Scaglione D, Magris G, Vidotto M, Pinosio S, Cattonaro F, Magni F, Jurman I, Cerutti M, Liverani FS, Navarini L, Del Terra L, Pellegrino G, Ruosi MR, Vitulo N, Valle G, Pallavicini A, Graziosi G, Klein PE, Bentley N, Murray S, Solano W, Al Hakimi A, Schilling T, Montagnon C, Morgante M, Bertrand B (2020) A single polyploidization event at the origin of the tetraploid genome of Coffea arabica is responsible for the extremely low genetic variation in wild and cultivated germplasm. Sci Rep 10(1):4642

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tegeder M, Masclaux-Daubresse C (2018) Source and sink mechanisms of nitrogen transport and use. New Phytol 217:35–53

    PubMed  Google Scholar 

  41. Tucker C (2017) Coffee culture, 2nd edn. Routledge, New York, p 188

    Google Scholar 

  42. Thalineau E, Fournier C, Gravot A, Wendehenne D, Jeandroz S, Truong H-N (2018) Nitrogen modulation of Medicago truncatula resistance to Aphanomyces euteiches depends on plant genotype. Mol Plant Pathol 19(3):664–676

    CAS  PubMed  Google Scholar 

  43. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York (ISBN 0-387-95457-0)

    Google Scholar 

  44. Vidal EA, Araus V, Lu C, Parry G, Green PJ, Coruzzi GM, Gutiérrez RA (2010) Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. P Natl Acad Sci 107:4477–4482

    CAS  Google Scholar 

  45. Vieira LGE, Andrade AC, Colombo CA, Moraes AHDA, Metha Â, Oliveira ACD, Labate CA, Marino CL, Monteiro-Vitorello CB, Monte DC, Giglioti E, Kimura ET, Romano E, Kuramae EE, Lemos EGM, Almeira ERP, Jorge EC, Albuquerque EVS, Silva FR, Vinecky F, Sawazaki HE, Dorry HFA, Carrer H, Abreu IN, Batista JAN, Teixeira JB, Kitajima JP, Xavier KG, Lima LM, Camargo LEA, Pereira LFP, Coutinho LL, Lemos MVF, Romano MR, Machado MA, Costa MMC, Sá MFG, Goldman MHS, Ferro MIT, Tinoco MLP, Oliveira MC, Sluys MAV, Shimizu MM, Maluf MP, Eira MTS, Filho OG, Arruda P, Mazzafera P, Mariani PDSC, Oliveira RLBC, Harakava R, Balbao SF, Tsai SM, Mauro SMZ, Santos SN, Siqueira WJ, Costa GGL, Formighieri EF, Carazzolle MF, Pereira GAG (2006) Brazilian coffee genome project: an ESTbased genomic resource. Braz J Plant Physiol 18:95–108

    CAS  Google Scholar 

  46. Wang WH, Köhler B, Cao FQ, Liu LH (2008) Molecular and physiological aspects of urea transport in higher plants. Plant Sci 175:467–477

    CAS  Google Scholar 

  47. Wang WH, Köhler B, Cao FQ, Liu GW, Gong YY, Sheng S, Song QC, Cheng XY, Garnett T, Okamoto M, Qin R, Mueller-Roeber B, Tester M, Liu LH (2012) Rice DUR3 mediates high-affinity urea transport and plays an effective role in improvement of urea acquisition and utilization when expressed in Arabidopsis. New Phytol 193:432–444

    CAS  PubMed  Google Scholar 

  48. Wang WH, Liu GW, Cao FQ, Cheng XY, Liu BW, Liu LH (2013) Inadequate root uptake may represent a major component limiting rice to use urea as sole nitrogen source for growth. Plant Soil 363(1–2):191–200

    CAS  Google Scholar 

  49. Weatherburn MW (1967) Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39:971–974

    CAS  Google Scholar 

  50. Witte CP (2011) Urea metabolism in plants. Plant Sci 180:431–438

    CAS  PubMed  Google Scholar 

  51. Yang H, Menz J, Haussermann I, Benz M, Fujiwara T, Ludewig U (2015) High and low affinity urea root uptake: involvement of NIP5;1. Plant Cell Physiol 56(8):1588–1597

    CAS  PubMed  Google Scholar 

  52. Yu Q, Guyot R, de Kochko A, Byers A, Navajas-Pérez R, Langston BJ, Dubreuil-Tranchant C, Paterson AH, Poncet V, Nagai C, Ming R (2011) Microcolinearity and genome evolution in the vicinity of an ethylene receptor gene of cultivated diploid and allotetraploid coffee species (Coffea). Plant J 67:305–317

    CAS  PubMed  Google Scholar 

  53. Zanin L, Tomasi N, Wirdnam C, Meier S, Komarova NY, Mimmo T, Cesco S, Rentsch D, Pinton R (2014) Isolation and functional characterization of a high affinity urea transporter from roots of Zea mays. BMC Plant Biol 14:222

    PubMed  PubMed Central  Google Scholar 

  54. Zhang L, Yan J, Vatamaniuk OK, Du X (2016) CsNIP2;1 is a plasma membrane transporter from Cucumis sativus that facilitates urea uptake when expressed in Saccharomyces cerevisiae and Arabidopsis thaliana. Plant Cell Physiol 57(3):616–629

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by of the Brazilian Coffee Research Consortium and National Council of Technological and Scientific Development (CNPq). Special acknowledge to Dr. Anderson Rotter Meda for participating in the beginning of these studies.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tiago Benedito dos Santos.

Ethics declarations

Conflict of interest

The author declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

dos Santos, T.B., Baba, V.Y., Vieira, L.G.E. et al. The urea transporter DUR3 is differentially regulated by abiotic and biotic stresses in coffee plants. Physiol Mol Biol Plants 27, 203–212 (2021). https://doi.org/10.1007/s12298-021-00930-6

Download citation

Keywords

  • Coffea ssp
  • Nitrogen deficiency
  • Gene expression
  • Urea transporter