Plant–microbiome interactions for sustainable agriculture: a review

Abstract

Plant–microbiome interactions are significant determinant for plant growth, fitness and productivity. Depending upon the specific habitat, plants' microbial communities are classified as the rhizo-, phyllo-, and endospheric regions. Understanding the plant microbiome interactions could provide an opportunity to develop strategies for sustainable agricultural practices. There is a necessity to decipher the complex structural and functional diversity within plant microbiomes to reveal its immense potential in agriculture. The plant microbiota harbors enormous microbial communities that defy analytical methodologies to study dynamics underlying plant microbiome interactions. Findings based on conventional approaches have ignored many beneficial microbial strains, which creates a serious gap in understanding the microbial communications along with the genetic adaptations, which favors their association with host plant. The new era of next generation sequencing techniques and modern cost-effective high-throughput molecular approaches can decipher microbial community composition and function. In this review, we have presented the overview of the various compartments of plants, approaches to allow the access to microbiome and factors that influence microbial community composition and function. Next, we summarize how plant microbiome interactions modulate host beneficial properties particularly nutrient acquisition and defense, along with future agricultural applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Achouak W, Haichar FZ (2019) Stable isotope probing of microbiota structure and function in the plant rhizosphere. In: Dumont MG, García MH (eds) Stable isotope probing. Humana, New York, pp 233–243

    Google Scholar 

  2. Adeleke BS, Babalola OO (2020) The endosphere microbial communities, a great promise in agriculture. Int Microbiol. https://doi.org/10.1007/s10123-020-00140-2

  3. Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, Kemen EM (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol 14:e1002352

    PubMed  PubMed Central  Google Scholar 

  4. Agrahari RK, Singh P, Koyama H, Panda SK (2020) Plant-microbe interactions for sustainable agriculture in the postgenomic era. Curr Genom 21:168–178

    CAS  Google Scholar 

  5. Andreote FD, Gumiere T, Durrer A (2014) Exploring interactions of plant microbiomes. Sci Agríc 71:528–539

    Google Scholar 

  6. Arif I, Batool M, Schenk PM (2020) Plant microbiome engineering: Expected benefits for improved crop growth and resilience. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2020.04.015

    Article  PubMed  Google Scholar 

  7. Averill C, Bhatnagar JM, Dietze MC, Pearse WD, Kivlin SN (2019) Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proc Natl Acad Sci 116:23163–23168

    CAS  PubMed  Google Scholar 

  8. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS microbiology ecology 68(1):1–13

    CAS  PubMed  Google Scholar 

  9. Berg M, Koskella B (2018) Nutrient-and dose-dependent microbiome-mediated protection against a plant pathogen. Curr Biol 28:2487–2492

    CAS  PubMed  Google Scholar 

  10. Bharati AP, Kumar A, Kumar S, Maurya DK, Kumari S, Agarwal DK, Kumar SJ (2020) Role of biotechnology in the exploration of soil and plant microbiomes. In: Solanki MK, Kashyap PL, Kumari B (eds) Phytobiomes: current insights and future vistas. Springer, Singapore, pp 335–355

    Google Scholar 

  11. Bhatt P, Verma A, Verma S, Anwar M, Prasher P, Mudila H, Chen S (2020) Understanding phytomicrobiome: a potential reservoir for better crop management. Sustainability 12:5446

    CAS  Google Scholar 

  12. Bodenhausen N, Somerville V, Desiro A, Walser JC, Borghi L, van der Heijden MG, Schlaeppi K (2019) Petunia-and Arabidopsis-specific root microbiota responses to phosphate supplementation. Phytobiomes J 3:112–124

    Google Scholar 

  13. Bodor A, Bounedjoum N, Vincze GE, Kis ÁE, Laczi K, Bende G, Szilágyi Á, Kovács T, Perei K, Rákhely G (2020) Challenges of unculturable bacteria: environmental perspectives. Rev Environ Sci Biol Technol 19:l1-22

    Google Scholar 

  14. Bouffaud ML, Poirier MA, Muller D, Moënne-Loccoz Y (2014) Root microbiome relates to plant host evolution in maize and other Poaceae. Environ Microbial 16:2804–2814

    Google Scholar 

  15. Bressan M, Roncato MA, Bellvert F, Comte G, el ZaharHaichar F, Achouak W, Berge O (2009) Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. ISME J 3:1243

    CAS  PubMed  Google Scholar 

  16. Bridier A, Piard JC, Pandin C, Labarthe S, Dubois-Brissonnet F, Briandet R (2017) Spatial organization plasticity as an adaptive driver of surface microbial communities. Front Microbial 8:1364

    Google Scholar 

  17. Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Ann Rev Plant Biol 64:807–838

    CAS  Google Scholar 

  18. Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A, Morsy M, Eisen JA, Leach JE, Dangl JL (2017) Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol 15:e2001793

    PubMed  PubMed Central  Google Scholar 

  19. Cappelletti M, Perazzolli M, Antonielli L, Nesler A, Torboli E, Bianchedi PL, Pindo M, Puopolo G, Pertot I (2016) Leaf treatments with a protein-based resistance inducer partially modify phyllosphere microbial communities of grapevine. Front Plant Sci 7:1053

    PubMed  PubMed Central  Google Scholar 

  20. Carrión VJ, Cordovez V, Tyc O, Etalo DW, de Bruijn I, de Jager VC, Medema MH, Eberl L, Raaijmakers JM (2018) Involvement of Burkholderiaceae and sulfurous volatiles in disease-suppressive soils. ISME J 12:2307–2321

    PubMed  PubMed Central  Google Scholar 

  21. Carvalhais LC, Dennis PG, Badri DV, Kidd BN, Vivanco JM, Schenk PM (2015) Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes. Mol Plant Microbe Int 28:1049–1058

    CAS  Google Scholar 

  22. Castrillo G, Teixeira PJPL, Paredes SH, Law TF, de Lorenzo L, Feltcher ME, Finkel OM, Breakfield NW, Mieczkowski P, Jones CD, Paz-Ares J (2017) Root microbiota drive direct integration of phosphate stress and immunity. Nature 543:513–518

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 4:669–678

    Google Scholar 

  24. Compant S, Samad A, Faist H, Sessitsch A (2019) A review on the plant microbiome: ecology, functions and emerging trends in microbial application. J Adv Res 19:29–37

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Copeland JK, Yuan L, Layeghifard M, Wang PW, Guttman DS (2015) Seasonal community succession of the phyllosphere microbiome. Mol Plant Microbe Interact 28:274–285

    CAS  PubMed  Google Scholar 

  26. da Silva FE, Peixoto RS, Rosado AS, de Carvalho BF, Tiedje JM, da Costa Rachid CTC (2018) The microbiome of Eucalyptus roots under different management conditions and its potential for biological nitrogen fixation. Microbial Ecol 75:183–191

    Google Scholar 

  27. Darlison J, Mogren L, Rosberg AK, Grudén M, Minet A, Liné C, Mieli M, Bengtsson T, Håkansson Å, Uhlig E, Becher PG (2019) Leaf mineral content govern microbial community structure in the phyllosphere of spinach (Spinacia oleracea) and rocket (Diplotaxis tenuifolia). Sci Total Environ 675:501–512

    CAS  PubMed  Google Scholar 

  28. Dastogeer KM, Li H, Sivasithamparam K, Jones MG, Wylie SJ (2018) Host specificity of endophytic mycobiota of wild Nicotiana plants from arid regions of Northern Australia. Microbial Ecol 75:74–87

    Google Scholar 

  29. Dastogeer KM, Tumpa FH, Sultana A, Akter MA, Chakraborty A (2020) Plant microbiome—an account of the factors that shape community composition and diversity. Curr Plant Biol 23:100161

    Google Scholar 

  30. De Vries FT, Manning P, Tallowin JR, Mortimer SR, Pilgrim ES, Harrison KA, Hobbs PJ, Quirk H, Shipley B, Cornelissen JH, Kattge J (2012) Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecol Lett 15:1230–1239

    PubMed  Google Scholar 

  31. del Carmen O-M, del Carmen R-G, Glick BR, Santoyo G (2018) Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol Res 208:25–31

    Google Scholar 

  32. Dellagi A, Quillere I, Hirel B (2020) Beneficial soil-borne bacteria and fungi: a promising way to improve plant nitrogen acquisition. J Exp Bot 71:4469–4479

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Dutta J, Bora U (2019) Rhizosphere microbiome and plant probiotics. In: Gupta VK (ed) New and future developments in microbial biotechnology and bioengineering. Elsevier, New York, pp 273–281

    Google Scholar 

  34. Fadiji AE, Babalola OO (2020) Metagenomics methods for the study of plant-associated microbial communities: a review. J Microbiol Methods 170:105860

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MT (2018) Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci 115:E1157–E1165

    CAS  PubMed  Google Scholar 

  36. Fitzpatrick CR, Salas-González I, Conway JM, Finkel OM, Gilbert S, Russ D, Teixeira PJPL, Dangl JL (2020) The plant microbiome: from ecology to reductionism and beyond. Ann Rev Microbiol 74:81–100

    CAS  Google Scholar 

  37. Goytain A, Ng T (2020) NanoString ncounter technology: high-throughput RNA validation. In: Li H, Elfman J (ed) Chimeric RNA. Humana, New York, pp 125–139

    Google Scholar 

  38. Gupta R, Singh A, Srivastava M, Shanker K, Pandey R (2018) Plant-microbe interactions endorse growth by uplifting microbial community structure of Bacopa monnieri rhizosphere under nematode stress. Microbiol Res 218:87–96

    PubMed  Google Scholar 

  39. Hahn MW, Koll U, Schmidt J (2019) Isolation and cultivation of bacteria. In: Hurst CJ (ed) The structure and function of aquatic microbial communities. Springer, Cham, pp 313–351

    Google Scholar 

  40. Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    PubMed  PubMed Central  Google Scholar 

  41. Hein JW, Wolfe GV, Blee KA (2008) Comparison of rhizosphere bacterial communities in Arabidopsis thaliana mutants for systemic acquired resistance. Microbial Ecol 55:333–343

    CAS  Google Scholar 

  42. Herlihy JH, Long TA, McDowell JM (2020) Iron homeostasis and plant immune responses: recent insights and translational implications. J Biol Chem 120:13444–13457

    Google Scholar 

  43. Hestrin R, Hammer EC, Mueller CW, Lehmann J (2019) Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition. Comm Biol 2:1–9

    CAS  Google Scholar 

  44. Hu L, Robert CA, Cadot S, Zhang X, Ye M, Li B, Manzo D, Chervet N, Steinger T, Van Der Heijden MG, Schlaeppi K (2018) Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat Commun 9:1–13

    Google Scholar 

  45. Huang XF, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92(4):267–275

    Google Scholar 

  46. Jacoby RP, Chen L, Schwier M, Koprivova A, Kopriva S (2020) Recent advances in the role of plant metabolites in shaping the root microbiome. F1000Res 9:151

    CAS  Google Scholar 

  47. Jongman M, Carmichael PC, Bill M (2020) Technological advances in phytopathogen detection and metagenome profiling techniques. Curr Microbiol 77:1–7

    Google Scholar 

  48. Kembel SW, O’Connor TK, Arnold HK, Hubbell SP, Wright SJ, Green JL (2014) Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc Natl Acad Sci 111:13715–13720

    CAS  PubMed  Google Scholar 

  49. Kniskern JM, Traw MB, Bergelson J (2007) Salicylic acid and jasmonic acid signaling defense pathways reduce natural bacterial diversity on Arabidopsis thaliana. Mol Plant Microbe Int 20:1512–1522

    CAS  Google Scholar 

  50. Kwak MJ, Kong HG, Choi K, Kwon SK, Song JY, Lee J, Lee PA, Choi SY, Seo M, Lee HJ, Jung EJ (2018) Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat Biotechnol 36:1100–1109

    CAS  Google Scholar 

  51. Laforest-Lapointe I, Messier C, Kembel SW (2016) Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome 4:27

    PubMed  PubMed Central  Google Scholar 

  52. Lareen A, Burton F, Schäfer P (2016) Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90:575–587

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, Malfatti S, Del Rio TG, Jones CD, Tringe SG, Dangl JL (2015) Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349:860–864

    CAS  PubMed  Google Scholar 

  54. Leff JW, Bardgett RD, Wilkinson A, Jackson BG, Pritchard WJ, Long JR, Oakley S, Mason KE, Ostle NJ, Johnson D, Baggs EM (2018) Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. ISME J 12:1794–1805

    PubMed  PubMed Central  Google Scholar 

  55. Levy A, Conway JM, Dangl JL, Woyke T (2018) Elucidating bacterial gene functions in the plant microbiome. Cell Host Microbe 24:475–485

    CAS  PubMed  Google Scholar 

  56. Liu Y, Zhu A, Tan H, Cao L, Zhang R (2019) Engineering banana endosphere microbiome to improve Fusarium wilt resistance in banana. Microbiome 7:74

    PubMed  PubMed Central  Google Scholar 

  57. Liu H, Brettell LE, Singh B (2020) Linking the phyllosphere microbiome to plant health. Trends Plant Sci 25:841–844

    CAS  PubMed  Google Scholar 

  58. Lu T, Ke M, Lavoie M, Jin Y, Fan X, Zhang Z, Fu Z, Sun L, Gillings M, Peñuelas J, Qian H (2018) Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome 6:1–12

    Google Scholar 

  59. Meyer JB, Song-Wilson Y, Foetzki A, Luginbühl C, Winzeler M, Kneubühler Y, Matasci C, Mascher-Frutschi F, Kalinina O, Boller T, Keel C (2013) Does wheat genetically modified for disease resistance affect root-colonizing pseudomonads and arbuscular mycorrhizal fungi? PLoS ONE 8:e53825

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Müller DB, Vogel C, Bai Y, Vorholt JA (2016) The plant microbiota: systems-level insights and perspectives. Ann Rev Gen 50:211–234

    Google Scholar 

  61. Naylor D, Sadler N, Bhattacharjee A, Graham EB, Anderton CR, McClure R, Lipton M, Hofmockel KS, Jansson JK (2020) Soil microbiomes under climate change and implications for carbon cycling. Ann Rev Environ Res 45:29–59

    Google Scholar 

  62. Parasuraman P, Pattnaik S, Busi S (2019) Phyllosphere microbiome: functional importance in sustainable agriculture. In: Gupta VK (ed) New and future developments in microbial biotechnology and bioengineering. Elsevier, London, pp 135–148

    Google Scholar 

  63. Paterson E, Gebbing T, Abel C, Sim A, Telfer G (2007) Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytol 173:600–610

    CAS  PubMed  Google Scholar 

  64. Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Edward SB, Ley RE (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci 110:6548–6553

    CAS  PubMed  Google Scholar 

  65. Pratama AA, Terpstra J, de Oliveria ALM, Salles JF (2020) The role of rhizosphere bacteriophages in plant health. Trends Microbiol 28:709–718

    CAS  PubMed  Google Scholar 

  66. Ravanbakhsh M, Sasidharan R, Voesenek LA, Kowalchuk GA, Jousset A (2018) Microbial modulation of plant ethylene signaling: ecological and evolutionary consequences. Microbiome 6:52

    PubMed  PubMed Central  Google Scholar 

  67. Reinhold-Hurek B, Bünger W, Burbano CS, Sabale M, Hurek T (2015) Roots shaping their microbiome: global hotspots for microbial activity. Ann Rev Phytopathol 53:403–424

    CAS  Google Scholar 

  68. Remus-Emsermann MN, Schlechter RO (2018) Phyllosphere microbiology: at the interface between microbial individuals and the plant host. New Phytol 218:1327–1333

    PubMed  Google Scholar 

  69. Risely A (2020) Applying the core microbiome to understand host–microbe systems. J Anim Ecol 89:1549–1558

    PubMed  Google Scholar 

  70. Samad A, Trognitz F, Compant S, Antonielli L, Sessitsch A (2017) Shared and host-specific microbiome diversity and functioning of grapevine and accompanying weed plants. Environ Microbiol 19:1407–1424

    PubMed  Google Scholar 

  71. Santhanam R, Menezes RC, Grabe V, LiD BIT, Groten K (2019) A suite of complementary biocontrol traits allows a native consortium of root-associated bacteria to protect their host plant from a fungal sudden-wilt disease. Mol Ecol 28:1154–1169

    CAS  PubMed  Google Scholar 

  72. Santoyo G, Moreno-Hagelsieb G, del Carmen O-M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    CAS  Google Scholar 

  73. Sasse J, Martinoia E, Northen T (2017) Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci 23:25–41

    PubMed  Google Scholar 

  74. Schlaeppi K, Bulgarelli D (2015) The plant microbiome at work. Mol Plant Microbe Interact 28:212–217

    CAS  PubMed  Google Scholar 

  75. Schlaeppi K, Dombrowski N, Oter RG, Loren V, van Themaat E, Schulze-Lefert P (2014) Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc Natl Acad Sci 111:585–592

    CAS  PubMed  Google Scholar 

  76. Schlatter D, Kinkel L, Thomashow L, Weller D, Paulitz T (2017) Disease suppressive soils: new insights from the soil microbiome. Phytopathology 107:1284–1297

    PubMed  Google Scholar 

  77. Singh SP, Gaur R (2017) Endophytic Streptomyces spp. underscore induction of defense regulatory genes and confers resistance against Sclerotium rolfsii in chickpea. Biol Control 104:44–56

    CAS  Google Scholar 

  78. Singh A, Kumar M, Verma S, Choudhary P, Chakdar H (2020) Plant microbiome: trends and prospects for sustainable agriculture. In: Varma A, Tripathi S, Prasad R (eds) Plant microbe symbiosis. Springer, Cham, pp 129–151

    Google Scholar 

  79. Sneck ME, Rudgers JA, Young CA, Miller TE (2019) Does host outcrossing disrupt compatibility with heritable symbionts? Oikos 128:892–903

    Google Scholar 

  80. Stringlis IA, Yu K, Feussner K, de Jonge R, Van Bentum S, Van Verk MC, Berendsen RL, Bakker PA, Feussner I, Pieterse CM (2018) MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proc Natl Acad Sci 115:5213–5222

    Google Scholar 

  81. Tao K, Kelly S, Radutoiu S (2019) Microbial associations enabling nitrogen acquisition in plants. Curr Opin Microbiol 49:83–89

    CAS  PubMed  Google Scholar 

  82. Teixeira PJP, Colaianni NR, Fitzpatrick CR, Dangl JL (2019) Beyond pathogens: microbiota interactions with the plant immune system. Curr Opin Microbiol 49:7–17

    CAS  PubMed  Google Scholar 

  83. Thapa S, Prasanna R (2018) Prospecting the characteristics and significance of the phyllosphere microbiome. Ann Microbial 68:229–245

    CAS  Google Scholar 

  84. Trivedi P, Delgado-Baquerizo M, Trivedi C, Hamonts K, Anderson IC, Singh BK (2017) Keystone microbial taxa regulate the invasion of a fungal pathogen in agro-ecosystems. Soil Biol Biochem 111:10–14

    CAS  Google Scholar 

  85. Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK (2020) Plant–microbiome interactions: from community assembly to plant health. Natl Rev Microbiol 18:1–15

    Google Scholar 

  86. Turner TR, James EK, Poole PS (2013) The plant microbiome. Gen Biol 14:209

    Google Scholar 

  87. Vannier N, Agler M, Hacquard S (2019) Microbiota-mediated disease resistance in plants. PLoS Pathog 15:e1007740

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Verma SK, Gond SK, Mishra A, Sharma VK, Kumar J, Singh DK, Kumar A, Kharwar RN (2017) Fungal endophytes representing diverse habitats and their role in plant protection. In: Satyanarayana T, Deshmukh SK, Johri BN (eds) Developments in fungal biology and applied mycology. Springer, Singapore, pp 135–157

    Google Scholar 

  89. Voges MJ, Bai Y, Schulze-Lefert P, Sattely ES (2019) Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome. Proc Natl Acad Sci 116:12558–12565

    PubMed  Google Scholar 

  90. Wei Z, Gu Y, Friman VP, Kowalchuk GA, Xu Y, Shen Q, Jousset A (2019) Initial soil microbiome composition and functioning predetermine future plant health. Sci Adv 5:eaaw0759

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wolfe BE (2018) Using cultivated microbial communities to dissect microbiome assembly: challenges, limitations, and the path ahead. Msystems 3:e00161-e217

    PubMed  PubMed Central  Google Scholar 

  92. Yadav AN, Singh J, Rastegari AA, Yadav N (eds) (2020) Plant microbiomes for sustainable agriculture. Springer, Berlin

    Google Scholar 

  93. Zarraonaindia I, Owens SM, Weisenhorn P, West K, Hampton-Marcell J, Lax S, Bokulich NA, Mills DA, Martin G, Taghavi S, van der Lelie D (2015) The soil microbiome influences grapevine-associated microbiota. MBio 6:e02527-e2614

    PubMed  PubMed Central  Google Scholar 

  94. Zhang J, Liu YX, Zhang N, Hu B, Jin T, Xu H, Qin Y, Yan P, Zhang X, Guo X, Hui J (2019) NRT1. 1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat Biotechnol 37:676–684

    CAS  PubMed  Google Scholar 

  95. Zhong Y, Yang Y, Liu P, Xu R, Rensing C, Fu X, Liao H (2019) Genotype and rhizobium inoculation modulate the assembly of soybean rhizobacterial communities. Plant Cell Environ 42:2028–2044

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dinesh Yadav.

Ethics declarations

Conflict of interest

All authors declare that there exists no conflict of interest among them.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gupta, R., Anand, G., Gaur, R. et al. Plant–microbiome interactions for sustainable agriculture: a review. Physiol Mol Biol Plants 27, 165–179 (2021). https://doi.org/10.1007/s12298-021-00927-1

Download citation

Keywords

  • Agriculture
  • Endosphere
  • Microbiome
  • Phyllosphere
  • Rhizosphere