Microarray analysis of Arabidopsis thaliana exposed to single and mixed infections with Cucumber mosaic virus and turnip viruses

Abstract

Cucumber mosaic virus (CMV), Turnip mosaic virus (TuMV) and Turnip crinkle virus (TCV) are important plant infecting viruses. In the present study, whole transcriptome alteration of Arabidopsis thaliana in response to CMV, TuMV and TCV, individual as well as mixed infections of CMV and TuMV/CMV and TCV were investigated using microarray data. In response to CMV, TuMV and TCV infections, a total of 2517, 3985 and 277 specific differentially expressed genes (DEGs) were up-regulated, while 2615, 3620 and 243 specific DEGs were down-regulated, respectively. The number of 1222 and 30 common DEGs were up-regulated during CMV and TuMV as well as CMV and TCV infections, while 914 and 24 common DEGs were respectively down-regulated. Genes encoding immune response mediators, signal transducer activity, signaling and stress response functions were among the most significantly upregulated genes during CMV and TuMV or CMV and TCV mixed infections. The NAC, C3H, C2H2, WRKY and bZIP were the most commonly presented transcription factor (TF) families in CMV and TuMV infection, while AP2-EREBP and C3H were the TF families involved in CMV and TCV infections. Moreover, analysis of miRNAs during CMV and TuMV and CMV and TCV infections have demonstrated the role of miRNAs in the down regulation of host genes in response to viral infections. These results identified the commonly expressed virus-responsive genes and pathways during plant–virus interaction which might develop novel antiviral strategies for improving plant resistance to mixed viral infections.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ahlquist P, Noueiry AO, Lee WM, Kushner DB, Dye BT (2003) Host factors in positive-strand RNA virus genome replication. J Virol 77(15):8181–8186

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Alazem M, Lin NS (2015) Roles of plant hormones in the regulation of host–virus interactions. Mol Plant Pathol 16(5):529–540

    CAS  PubMed  Google Scholar 

  3. Alcaide-Loridan C, Jupin I (2012) Ubiquitin and plant viruses, let’s play together! Plant Physiol 160(1):72–82

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Alves M, Dadalto S, Gonçalves A, de Souza G, Barros V, Fietto L (2014) Transcription factor functional protein-protein interactions in plant defense responses. Proteomes 2(1):85–106

    PubMed  PubMed Central  Google Scholar 

  5. Asad J, Maruyama K, Todaka D, Kidokoro S, Abo M, Yoshimura E, Shinozaki K, Nakashima K, Yamaguchi-Shinozaki K (2013) OsTZF1, a CCCH-tandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes. Plant Physiol 161(3):1202–1216

    Google Scholar 

  6. Ashrafi-Dehkordi E, Alemzadeh A, Tanaka N, Razi H (2018) Meta-analysis of transcriptomic responses to biotic and abiotic stress in tomato. PeerJ 6:e4631

    PubMed  PubMed Central  Google Scholar 

  7. Balazadeh S, Riaño-Pachón DM, Mueller-Roeber B (2008) Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biol 10:63–75

    PubMed  Google Scholar 

  8. Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69(4):473–488

    CAS  PubMed  Google Scholar 

  9. Batoko H, Dagdas Y, Baluska F, Sirko A (2017) Understanding and exploiting autophagy signaling in plants. Essays Biochem 61(6):675–685

    PubMed  PubMed Central  Google Scholar 

  10. Bazzini AA, Manacorda CA, Tohge T, Conti G, Rodriguez MC, Nunes-Nesi A, Villanueva S, Fernie AR, Carrari F, Asurmendi S (2011) Metabolic and miRNA profiling of TMV infected plants reveals biphasic temporal changes. PLoS ONE 6(12):e28466

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bethke G, Glazebrook J (2019) Measuring pectin properties to track cell wall alterations during plant-pathogen interactions. In: Gassmann W (ed) Plant innate immunity. Methods in molecular biology, vol 1991. Humana. New York, NY

    Google Scholar 

  12. Bock JB, Matern HT, Peden AA, Scheller RH (2001) A genomic perspective on membrane compartment organization. Nature 409(6822):839

    CAS  Google Scholar 

  13. Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C, Kiddle S, Kim YS, Penfold CA, Jenkins D, Zhang C (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23(3):873–894

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Broadbent L, Heathcote GD (1958) Properties and host range of turnip crinkle, rosette and yellow mosaic viruses. Ann Appl Biol 46(4):585–592

    Google Scholar 

  15. Chen Q, Wei T (2020) Cell biology during infection of plant viruses in insect vectors and plant hosts. Mol Plant Microbe Interact 33(1):18–25

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen L, Zhang L, Li D, Wang F, Yu D (2013) WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis. Proc Natl Acad Sci USA 110(21):E1963–E1971

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen YJ, Zhang J, Liu J, Deng XG, Zhang P, Zhu T, Chen LJ, Bao WK, Xi DH, Lin HH (2014) The capsid protein p38 of turnip crinkle virus is associated with the suppression of cucumber mosaic virus in Arabidopsis thaliana co-infected with cucumber mosaic virus and turnip crinkle virus. Virology 462:71–80

    PubMed  PubMed Central  Google Scholar 

  18. Cheng HY, Wang Y, Tao X, Fan YF, Dai Y, Yang H, Ma XR (2016) Genomic profiling of exogenous abscisic acid-responsive microRNAs in tomato (Solanum lycopersicum). BMC Genom 17(1):423

    Google Scholar 

  19. Cheong WH, Tan YC, Yap SJ, Ng KP (2015) ClicO FS: an interactive web-based service of Circos. Bioinformatics 31(22):3685–3687

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ciftci-Yilmaz S, Mittler R (2008) The zinc finger network of plants. Cell Mol Life Sci 65:1150–1160

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Citovsky V, Zaltsman A, Kozlovsky SV, Gafni Y, Krichevsky A (2009) Proteasomal degradation in plant–pathogen interactions. Semin Cell Dev Biol 20(9):1048–1054

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Cohen Y, Gisel A, Zambryski PC (2000) Cell-to-cell and systemic movement of recombinant green fluorescent protein-tagged turnip crinkle viruses. Virology 273(2):258–266

    CAS  PubMed  Google Scholar 

  23. Culver JN, Padmanabhan MS (2007) Virus-induced disease: altering host physiology one interaction at a time. Annu Rev Phytopathol 45:221–243

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Dagdas YF, Belhaj K, Maqbool A, Chaparro-Garcia A, Pandey P, Petre B, Tabassum N, Cruz-Mireles N, Hughes RK, Sklenar J, Win J (2016) An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. Elife 5:e10856

    PubMed  PubMed Central  Google Scholar 

  25. Dai X, Zhao PX (2018) psRNATarget: a plant small RNA target analysis server. Nucl Acids Res 46(W1):W49–W54

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Das A, Mondal TK (2010) Computational identification of conserved microRNAs and their targets in tea (Camellia sinensis). Am J Plant Sci 1(02):77

    CAS  Google Scholar 

  27. Das A, Chaudhury S, Kalita MC, Mondal TK (2015) In silico identification, characterization and expression analysis of miRNAs in Cannabis sativa L. Plant Gene 2:17–24

    CAS  Google Scholar 

  28. Diaz-Mendoza M, Velasco-Arroyo B, Santamaria ME, González-Melendi P, Martinez M, Diaz I (2016) Plant senescence and proteolysis: two processes with one destiny. Genet Mol Biol 39(3):329–338

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Dielen AS, Badaoui S, Candresse T, German-Retana SYLVIE (2010) The ubiquitin/26S proteasome system in plant–pathogen interactions: a never-ending hide-and-seek game. Mol Plant Pathol 11(2):293–308

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Dimitriadou E, Hornik K, Leisch F, Meyer D, Weingessel A, Leisch MF (2009) Package ‘e1071’. R Software package. http://cran.rproject.org/web/packages/e1071/index.html

  31. Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) AgriGO: a GO analysis toolkit for the agricultural community. Nucle Acids Res 38:W64–W70.

    CAS  Google Scholar 

  32. Edwardson JR, Christie RG (1991) The Potyvirus group, Florida agricultural experiment station monograph series, Gainesville, FL, University of Florida, No. 16

  33. Espinoza C, Medina C, Somerville S, Arce-Johnson P (2007) Senescence-associated genes induced during compatible viral interactions with grapevine and Arabidopsis. J Exp Bot 58(12):3197–3212

    CAS  PubMed  Google Scholar 

  34. Etemadi M, Gutjahr C, Couzigou JM, Zouine M, Lauressergues D, Timmers A, Audran CB, M, Bécard G, Combier JP, (2014) Auxin perception is required for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Physiol 166(1):281–292

    PubMed  PubMed Central  Google Scholar 

  35. Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10(4):366–371

    CAS  PubMed  Google Scholar 

  36. Fagard M, Launay A, Clément G, Courtial J, Dellagi A, Farjad M, Krapp A, Soulié MC, Masclaux-Daubresse C (2014) Nitrogen metabolism meets phytopathology. J Exp Bot 65(19):5643–5656

    CAS  PubMed  Google Scholar 

  37. Fernandez-Calvino L, Guzmán-Benito I, Del Toro FJ, Donaire L, Castro-Sanz AB, Ruíz-Ferrer V, Llave C (2016) Activation of senescence-associated Dark-inducible (DIN) genes during infection contributes to enhanced susceptibility to plant viruses. Mol Plant Pathol 17(1):3–15

    CAS  PubMed  Google Scholar 

  38. Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11(4):861–905

    CAS  PubMed  Google Scholar 

  39. Gan S, Amasino RM (1997) Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence). Plant Physiol 113(2):313

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gao P, Bai X, Yang L, Lv D, Pan X, Li Y, Cai H, Ji W, Chen Q, Zhu Y (2011) osa-MIR393: a salinity-and alkaline stress-related microRNA gene. Mol Biol Rep 38(1):237–242

    CAS  PubMed  Google Scholar 

  41. Golem S, Culver JN (2003) Tobacco mosaic virus induced alterations in the gene expression profile of Arabidopsis thaliana. Mol Plant Microbe Interact 16(8):681–688

    CAS  PubMed  Google Scholar 

  42. Guerret MG, Nyalugwe EP, Maina S, Barbetti MJ, Van Leur JA, Jones RA (2017) Biological and molecular properties of a Turnip mosaic virus (TuMV) strain that breaks TuMV resistances in Brassica napus. Plant Dis 101(5):674–683

    CAS  PubMed  Google Scholar 

  43. Guo Q, Xiang A, Yang Q, Yang Z (2007) Bioinformatic identification of microRNAs and their target genes from Solanum tuberosum expressed sequence tags. Chin Sci Bull 52(17):2380–2389

    CAS  Google Scholar 

  44. Guo YH, Yu YP, Wang D, Wu CA, Yang GD, Huang JG, Zheng CC (2009) GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5. New Phytol 183(1):62–75

    CAS  PubMed  Google Scholar 

  45. Haffner E, Konietzki S, Diederichsen E (2015) Keeping control: The role of senescence and development in plant pathogenesis and defense. Plants 4(3):449–488

    PubMed  PubMed Central  Google Scholar 

  46. Hafren A, Macia JL, Love AJ, Milner JJ, Drucker M, Hofius D (2017) Selective autophagy limits cauliflower mosaic virus infection by NBR1-mediated targeting of viral capsid protein and particles. Proc Natl Acad Sci USA 114(10):E2026–E2035

    CAS  PubMed  Google Scholar 

  47. Han J, Xie H, Kong ML, Sun QP, Li RZ, Pan JB (2014) Computational identification of miRNAs and their targets in Phaseolus vulgaris. Genet Mol Res 13(1):310–322

    CAS  PubMed  Google Scholar 

  48. Harries P, Ding B (2011) Cellular factors in plant virus movement: at the leading edge of macromolecular trafficking in plants. Virology 411(2):237–243

    CAS  PubMed  Google Scholar 

  49. Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13(2):89

    CAS  PubMed  Google Scholar 

  50. Hollings M, Stone OM (1972) Turnip crinkle virus. CMI/AAB Descriptions of Plant Viruses, No 109

  51. Huang J, Yang M, Lu L, Zhang X (2016) Diverse functions of small RNAs in different plant-pathogen communications. Front Microbiol 7:1552

    PubMed  PubMed Central  Google Scholar 

  52. Huh SU, Lee GJ, Jung JH, Kim Y, Kim YJ, Paek KH (2015) Capsicum annuum transcription factor WRKYa positively regulates defense response upon TMV infection and is a substrate of CaMK1 and CaMK2. Sci Rep 5:7981

    PubMed  PubMed Central  Google Scholar 

  53. Jan A, Maruyama K, Todaka D, Kidokoro S, Abo M, Yoshimura E, Shinozaki K, Nakashima K, Yamaguchi-Shinozaki K (2013) OsTZF1, a CCCH-tandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes. Plant Physiol 161(3):1202–1216

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Jelitto-Van Dooren EP, Vidal S, Denecke J (1999) Anticipating endoplasmic reticulum stress: a novel early response before pathogenesis-related gene induction. Plant Cell 11(10):1935–1943

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Jensen MK, Kjaersgaard T, Nielsen MM, Galberg P, Petersen K, O’Shea C, Skriver K (2010) The Arabidopsis thaliana NAC transcription factor family: structure–function relationships and determinants of ANAC019 stress signalling. Biochem J 426(2):183–196

    CAS  PubMed  Google Scholar 

  56. Jiang L, Pan LJ (2012) Identification and expression of C2H2 transcription factor genes in Carica papaya under abiotic and biotic stresses. Mol Biol Rep 39(6):7105–7115

    CAS  PubMed  Google Scholar 

  57. Jiang Y, Wang JH, Yang H, Xu MY, Yuan S, Sun W, Xu WL, Xi DH, Lin HH (2010) Identification and sequence analysis of Turnip mosaic virus infection on cruciferous crops in southwest China. J Plant Pathol 92:241–244

    CAS  Google Scholar 

  58. Jiang Y, Duan Y, Yin J, Ye S, Zhu J, Zhang F, Lu W, Fan D, Luo K (2014) Genome-wide identification and characterization of the Populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses. J Exp Bot 65(22):6629–6644

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14(6):787–799

    CAS  PubMed  Google Scholar 

  60. Joshi H (2018) In silico identification and target prediction of microRNAs in Sesame (sesamum indicum L.) expressed sequence tags. Genet Mol Res 17(2):gmr16039911

    Google Scholar 

  61. Kabbage M, Williams B, Dickman MB (2013) Cell death control: the interplay of apoptosis and autophagy in the pathogenicity of Sclerotinia sclerotiorum. PLoS Pathog 9(4):e1003287

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kaminaka H, Näke C, Epple P, Dittgen J, Schütze K, Chaban C, Holt BF III, Merkle T, Schäfer E, Harter K, Dangl JL (2006) bZIP10-LSD1 antagonism modulates basal defense and cell death in Arabidopsis following infection. EMBO J 25(18):4400–4411

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kharonov Y (2013) Computational prediction and qPCR validation of miRNA in Ceratopteris richardii. CUNY Academic Works, New York

    Google Scholar 

  64. Khojasteh M, Khahani B, Taghavi M, Tavakol E (2018) Identification and characterization of responsive genes in rice during compatible interactions with pathogenic pathovars of Xanthomonas oryzae. Eur J Plant Pathol 151(1):141–153

    CAS  Google Scholar 

  65. Kiełbowicz-Matuk A (2012) Involvement of plant C2H2-type zinc finger transcription factors in stress responses. Plant Sci 185:78–85

    PubMed  Google Scholar 

  66. Kulshrestha C, Pathak H, Kumar D, Dave S, Sudan J (2020) Elucidating micro RNAs role in different plant–pathogen interactions. Mol Biol Rep 47:8219–8227

    CAS  PubMed  Google Scholar 

  67. Lam E, Kato N, Lawton M (2001) Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411(6839):848–853

    CAS  PubMed  Google Scholar 

  68. Lecellier CH, Voinnet O (2004) RNA silencing: no mercy for viruses? Immunol Rev 198(1):285–303

    CAS  PubMed  Google Scholar 

  69. Lewis JD, Lazarowitz SG (2010) Arabidopsis synaptotagmin SYTA regulates endocytosis and virus movement protein cell-to-cell transport. Proc Natl Acad Sci USA 107(6):2491–2496

    CAS  PubMed  Google Scholar 

  70. Li B, Gaudinier A, Tang M, Taylor-Teeples M, Nham NT, Ghaffari C, Benson DS, Steinmann M, Gray JA, Brady SM, Kliebenstein DJ (2014a) Promoter based integration in plant defense regulation. Plant Physiol 166(4):1803–1820

    PubMed  PubMed Central  Google Scholar 

  71. Li X, Hou Y, Zhang L, Zhang W, Quan C, Cui Y, Bian S (2014b) Computational identification of conserved microRNAs and their targets from expression sequence tags of blueberry (Vaccinium corybosum). Plant Signal Behav 9(9):e29462

    PubMed  PubMed Central  Google Scholar 

  72. Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14(5):836–843

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Manfre AJ, Simon AE (2008) Importance of coat protein and RNA silencing in satellite RNA/virus interactions. Virology 379(1):161–167

    CAS  PubMed  Google Scholar 

  74. Martínez F, Elena SF, Daròs JA (2013) Fate of artificial microRNA-mediated resistance to plant viruses in mixed infections. Phytopathology 103(8):870–876

    PubMed  Google Scholar 

  75. Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105(7):1141–1157

    PubMed  PubMed Central  Google Scholar 

  76. Matsui A, Nguyen A, Nakaminami K, Seki M (2013) Arabidopsis non-coding RNA regulation in abiotic stress responses. Int J Mol Sci 14(11):22642–22654

    PubMed  PubMed Central  Google Scholar 

  77. Maule A, Leh V, Lederer C (2002) The dialogue between viruses and hosts in compatible interactions. Curr Opin Plant Biol 5(4):279–284

    CAS  PubMed  Google Scholar 

  78. McLellan H, Boevink PC, Armstrong MR, Pritchard L, Gomez S, Morales J, Whisson SC, Beynon JL, Birch PR (2013) An RxLR effector from Phytophthora infestans prevents re-localisation of two plant NAC transcription factors from the endoplasmic reticulum to the nucleus. PLoS Pathog 9(10):e1003670

    PubMed  PubMed Central  Google Scholar 

  79. Moreno AB, López-Moya JJ (2020) When viruses play team sports: Mixed infections in plants. Phytopathology 110(1):29–48

    CAS  PubMed  Google Scholar 

  80. Moustafa K, Cross J (2016) Genetic approaches to study plant responses to environmental stresses: an overview. Biology 5(2):20

    PubMed Central  Google Scholar 

  81. Navabpour S, Morris K, Allen R, Harrison E, A-H-MackernessBuchanan-Wollaston SV (2003) Expression of senescence-enhanced genes in response to oxidative stress. J Exp Bot 54(391):2285–2292

    CAS  PubMed  Google Scholar 

  82. Nguyen HD, Tomitaka Y, Ho SY, Duchêne S, Vetten HJ, Lesemann D, Walsh JA, Gibbs AJ, Ohshima K (2013) Turnip mosaic potyvirus probably first spread to Eurasian brassica crops from wild orchids about 1000 years ago. PLoS ONE 8(2):e55336

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Nicaise V (2014) Crop immunity against viruses: outcomes and future challenges. Front Plant Sci 5:660

    PubMed  PubMed Central  Google Scholar 

  84. Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H, Kikuchi S (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene 465(1):30–44

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Nuruzzaman M, Sharoni AM, Kikuchi S (2013) Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol 4:248

    PubMed  PubMed Central  Google Scholar 

  86. Oh S, Park S, Han KH (2003) Transcriptional regulation of secondary growth in Arabidopsis thaliana. J Exp Bot 54(393):2709–2722

    CAS  PubMed  Google Scholar 

  87. Pacheco R, Garcıa-Marcos A, Barajas D, Martianez J, Tenllado F (2012) PVX-potyvirus synergistic infections differentially alter microRNA accumulation in Nicotiana benthamiana. Virus Res 165:231–235

    CAS  PubMed  Google Scholar 

  88. Pagan I, Fraile A, Fernandez-Fueyo E, Montes N, Alonso-Blanco C, García-Arenal F (2010) Arabidopsis thaliana as a model for the study of plant-virus co-evolution. Philos Trans R Soc Lond B Biol Sci 365(1548):1983–1995

    PubMed  PubMed Central  Google Scholar 

  89. Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425(6955):257

    CAS  PubMed  Google Scholar 

  90. Palukaitis P, García-Arenal F (2003) Cucumoviruses. Adv Virus Res 62:241–323

    CAS  PubMed  Google Scholar 

  91. Pashaiasl M, Khodadadi K, Kayvanjoo AH, Pashaei-asl R, Ebrahimie E, Ebrahimi M (2016) Unravelling evolution of Nanog, the key transcription factor involved in self-renewal of undifferentiated embryonic stem cells, by pattern recognition in nucleotide and tandem repeats characteristics. Gene 578(2):194–204

    CAS  PubMed  Google Scholar 

  92. Pesti R, Kontra L, Paul K, Vass I, Csorba T, Havelda Z, Várallyay É (2019) Differential gene expression and physiological changes during acute or persistent plant virus interactions may contribute to viral symptom differences. PLoS ONE 14(5):e0216618

    PubMed  PubMed Central  Google Scholar 

  93. Rahoutei J, García-Luque I, Barón M (2000) Inhibition of photosynthesis by viral infection: effect on PSII structure and function. Physiol Plant 110(2):286–292

    CAS  Google Scholar 

  94. Rand RP, Parsegian VA (1989) Hydration forces between phospholipid bilayers. Biochim Biophys Acta Rev Biomembr 988(3):351–376

    CAS  Google Scholar 

  95. Ren T, Qu F, Morris TJ (2000) HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus. Plant Cell 12(10):1917–1925

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Robert-Seilaniantz A, MacLean D, Jikumaru Y, Hill L, Yamaguchi S, Kamiya Y, Jones JD (2011) The microRNA miR393 re-directs secondary metabolite biosynthesis away from camalexin and towards glucosinolates. Plant J 67(2):218–231

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Rojas CM, Senthil-Kumar M, Tzin V, Mysore K (2014) Regulation of primary plant metabolism during plant–pathogen interactions and its contribution to plant defense. Front Plant Sci 5:17

    PubMed  PubMed Central  Google Scholar 

  98. Romanel EA, Schrago CG, Couñago RM, Russo CA, Alves-Ferreira M (2009) Evolution of the B3 DNA binding superfamily: new insights into REM family gene diversification. PLoS ONE 4(6):e5791

    PubMed  PubMed Central  Google Scholar 

  99. Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15(5):247–258

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Sánchez F, Manrique P, Mansilla C, Lunello P, Wang X, Rodrigo G, López-González S, Jenner C, González-Melendi P, Elena SF, Walsh J (2015) Viral strain-specific differential alterations in Arabidopsis developmental patterns. Mol Plant Microbe Interact 28(12):1304–1315

    PubMed  PubMed Central  Google Scholar 

  101. Schenk PM, Kazan K, Rusu AG, Manners JM, Maclean DJ (2005) The SEN1 gene of Arabidopsis is regulated by signals that link plant defence responses and senescence. Plant Physiol Biochem 43:997–1005

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Schoelz JE, Harries PA, Nelson RS (2011) Intracellular transport of plant viruses: finding the door out of the cell. Mol Plant 4(5):813–831

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31(3):279–292

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Selth LA, Dogra SC, Rasheed MS, Healy H, Randles JW, Rezaian MA (2005) A NAC domain protein interacts with tomato leaf curl virus replication accessory protein and enhances viral replication. Plant Cell 17(1):311–325

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Senthil G, Liu H, Puram VG, Clark A, Stromberg A, Goodin MM (2005) Specific and common changes in Nicotiana benthamiana gene expression in response to infection by enveloped viruses. J Gen Virol 86(9):2615–2625

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Seo E, Choi D (2015) Functional studies of transcription factors involved in plant defenses in the genomics era. Brief Funct Genom 14(4):260–267

    CAS  Google Scholar 

  107. Shaik R, Ramakrishna W (2013) Genes and co-expression modules common to drought and bacterial stress responses in Arabidopsis and rice. PLoS ONE 8(10):e77261

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Sharma MK, Kumar R, Solanke AU, Sharma R, Tyagi AK, Sharma AK (2010) Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato. Mol Genet Genom 284(6):455–475

    CAS  Google Scholar 

  109. Sharma R, De Vleesschauwer D, Sharma MK, Ronald PC (2013) Recent advances in dissecting stress-regulatory crosstalk in rice. Mol Plant 6(2):250–260

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Shukla LI, Chinnusamy V, Sunkar R (2008) The role of microRNAs and other endogenous small RNAs in plant stress responses. Biochim Biophys Acta Gene Regul Mech 1779(11):743–748

    CAS  Google Scholar 

  111. Sommerville C, Koornneef M (2002) A fortunate choice: the history of Arabidopsis as a model plant. Nat Rev Genet 3(11):883–889

    Google Scholar 

  112. Spence NJ, Phiri NA, Hughes SL, Mwaniki A, Simons S, Oduor G, Chacha D, Kuria A, Ndirangu S, Kibata GN, Marris GC (2007) Economic impact of Turnip mosaic virus, Cauliflower mosaic virus and Beet mosaic virus in three Kenyan vegetables. Plant Pathol 56:317–323

    Google Scholar 

  113. Srivastava S, Srivastava AK, Suprasanna P, D’souza SF, (2012) Identification and profiling of arsenic stress-induced microRNAs in Brassica juncea. J Exp Bot 64(1):303–315

    Google Scholar 

  114. Sui S, Luo J, Ma J, Zhu Q, Lei X, Li M (2012) Generation and analysis of expressed sequence tags from Chimonanthus praecox (Wintersweet) flowers for discovering stress-responsive and floral development-related genes. Comp Funct Genom 2012:134596

    Google Scholar 

  115. Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17(4):196–203

    CAS  PubMed  Google Scholar 

  116. Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203(1):32–43

    PubMed  PubMed Central  Google Scholar 

  117. Syller J (2012) Facilitative and antagonistic interactions between plant viruses in mixed infections. Mol Plant Pathol 13(2):204–216

    PubMed  Google Scholar 

  118. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M (2014) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucl Acids Res 43(D1):D447–D452

    PubMed  Google Scholar 

  119. Tahmasebi A, Ashrafi-Dehkordi E, Shahriari AG, Mazloomi SM, Ebrahimie E (2019) Integrative meta-analysis of transcriptomic responses to abiotic stress in cotton. Prog Biophys Mol Biol 1(146):112–122

    Google Scholar 

  120. Takeshita M, Koizumi E, Noguchi M, Sueda K, Shimura H, Ishikawa N, Matsuura H, Ohshima K, Natsuaki T, Kuwata S, Furuya N (2012) Infection dynamics in viral spread and interference under the synergism between Cucumber mosaic virus and Turnip mosaic virus. Mol Plant Microbe Interact 25(1):18–27

    CAS  PubMed  Google Scholar 

  121. Trujillo M, Shirasu K (2010) Ubiquitination in plant immunity. Curr Opin Plant Biol 13(4):402–408

    CAS  PubMed  Google Scholar 

  122. Tsuyuzaki K, Nikaido I (2020) MetaSeq: meta-analysis of RNA-Seq count data in multiple studies. R package version 1.30.0

  123. Van der Ent S, Verhagen BW, Van Doorn R, Bakker D, Verlaan MG, Pel MJ, Joosten RG, Proveniers MC, Van Loon LC, Ton J, Pieterse CM (2008) MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis. Plant Physiol 146(3):1293–1304

    PubMed  PubMed Central  Google Scholar 

  124. Van Regenmortel MH, Fauquet CM, Bishop DH, Carstens EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, McGeoch DJ, Pringle CR, Wickner RB (2000) Virus taxonomy: classification and nomenclature of viruses. In: Seventh report of the International Committee on Taxonomy of Viruses. Academic Press

  125. Verchot J (2014) The ER quality control and ER associated degradation machineries are vital for viral pathogenesis. Front Plant Sci 5:66

    PubMed  PubMed Central  Google Scholar 

  126. Verchot J (2016) Plant virus infection and the ubiquitin proteasome machinery: arms race along the endoplasmic reticulum. Viruses 8(11):314

    Google Scholar 

  127. Vierstra RD (2009) The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol 10(6):385

    CAS  PubMed  Google Scholar 

  128. Walsh JA, Jenner CE (2002) Turnip mosaic virus and the quest for durable resistance. Mol Plant Pathol 3(5):289–300

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Wang D, Guo Y, Wu C, Yang G, Li Y, Zheng C (2008) Genome-wide analysis of CCCH zinc finger family in Arabidopsis and rice. BMC Genom 9(1):44

    Google Scholar 

  130. Whitham SA, Wang Y (2004) Roles for host factors in plant viral pathogenicity. Curr Opin Plant Biol 7(4):365–371

    CAS  PubMed  Google Scholar 

  131. Whitham SA, Quan S, Chang HS, Cooper B, Estes B, Zhu T, Wang X, Hou YM (2003) Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. Plant J 33(2):271–283

    CAS  PubMed  Google Scholar 

  132. Whitham SA, Yang C, Goodin MM (2006) Global impact: elucidating plant responses to viral infection. Mol Plant Microbe Interact 19(11):1207–1215

    CAS  PubMed  Google Scholar 

  133. Wong J, Gao L, Yang Y, Zhai J, Arikit S, Yu Y, Duan S, Chan V, Xiong Q, Yan J, Li S (2014) Roles of small RNA s in soybean defense against Phytophthora sojae infection. Plant J 79(6):928–940

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY, Wei L (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucl Acids Res 39:W316–W322

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Xiong Y, Contento AL, Bassham DC (2005) AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. Plant J 42(4):535–546

    CAS  PubMed  Google Scholar 

  136. Yang H, Wang S, Xi D, Yuan S, Wang J, Xu M, Lin H (2010) Interaction between Cucumber mosaic virus and Turnip crinkle virus in Arabidopsis thaliana. J Phytopathol 158(11–12):833–836

    CAS  Google Scholar 

  137. Yasaka R, Ohba K, Schwinghamer MW, Fletcher J, Ochoa-Corona FM, Thomas JE, Ho SY, Gibbs AJ, Ohshima K (2015) Phylodynamic evidence of the migration of turnip mosaic potyvirus from Europe to Australia and New Zealand. J Gen Virol 96(3):701–713

    CAS  PubMed  Google Scholar 

  138. Yilmaz A, Mejia-Guerra MK, Kurz K, Liang X, Welch L, Grotewold E (2011) AGRIS: The Arabidopsis gene regulatory information server, an update. Nucl Acids Res 39:D1118–D1122

    CAS  PubMed  Google Scholar 

  139. Zanetti ME, Rípodas C (1860) Niebel A (2017) Plant NF-Y transcription factors: key players in plant-microbe interactions, root development and adaptation to stress. Biochim Biophys Acta Gene Regul Mech 5:645–654

    Google Scholar 

  140. Zhang W, Gao S, Zhou X, Chellappan P, Chen Z, Zhou X, Zhang X, Fromuth N, Coutino G, Coffey M, Jin H (2011) Bacteria-responsive microRNAs regulate plant innate immunity by modulating plant hormone networks. Plant Mol Biol 75(1–2):93–105

    CAS  PubMed  Google Scholar 

  141. Zhao J, Zhang W, Zhao Y, Gong X, Guo L, Zhu G, Wang X, Gong Z, Schumaker KS, Guo Y (2007) SAD2, an importin β-like protein, is required for UV-B response in Arabidopsis by mediating MYB4 nuclear trafficking. Plant Cell 19(11):3805–3818

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136(1):2621–2632

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aminallah Tahmasebi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Consent for publication

The manuscript has been read and approved by all named authors.

Ethical approval

This study did not include any experiments with human participants or animals performed by all the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tahmasebi, A., Khahani, B., Tavakol, E. et al. Microarray analysis of Arabidopsis thaliana exposed to single and mixed infections with Cucumber mosaic virus and turnip viruses. Physiol Mol Biol Plants 27, 11–27 (2021). https://doi.org/10.1007/s12298-021-00925-3

Download citation

Keywords

  • Arabidopsis thaliana
  • Defense responses
  • Differentially expressed genes
  • Microarray
  • Virus infection