Selenium accumulation characteristics of Cyphomandra betacea (Solanum betaceum) seedlings

Abstract

A pot experiment was conducted to study the selenium (Se) accumulation characteristics and the tolerance of Cyphomandra betacea (Solanum betaceum) seedlings under different soil Se concentrations. The 5 mg/kg soil Se concentration increased the C. betacea seedling biomass and photosynthetic pigment contents (chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid), whereas the other soil Se concentrations (10, 25, and 50 mg/kg) inhibited seedling growth. Increases in the soil Se concentrations tended to decrease the superoxide dismutase activity and soluble protein content, but had the opposite effect on the peroxidase and catalase activities. The 5, 10, and 25 mg/kg soil Se concentrations decreased the DNA methylation levels of C. betacea seedlings because of an increase in demethylation patterns (versus 0 mg/kg), whereas the 50 mg/kg soil Se concentration increased the DNA methylation levels because of an increase in hypermethylation patterns (versus 0 mg/kg). Increases in the soil Se concentrations were accompanied by an increasing trend in the Se content of C. betacea seedlings. Moreover, the amount of Se extracted by the shoots was highest for the 25 mg/kg soil Se concentration. Therefore, C. betacea may be able to accumulate relatively large amounts of Se and its growth may be promoted in 5 mg/kg soil Se.

This is a preview of subscription content, log in to check access.

References

  1. Alfthana G, Eurola M, Ekholm P, Venäläinen ER, Root T, Korkalainen K, Hartikainen H, Salminen P, Hietaniemi V, Aspila P, Aro A, for the Selenium Working Group (2015) Effects of nationwide addition of selenium to fertilizers on foods, and animal and human health in Finland: from deficiency to optimal selenium status of the population. J Trace Elem Med Biol 31:142–147

    Google Scholar 

  2. Bao SD (2000) Soil agro-chemistrical analysis. China Agriculture Press, Beijing

    Google Scholar 

  3. Bicas PA, Daood HG, Kodar I (1995) Effect of Mo, Se, Zn, and Cr treatments on the yield, element concentration, and carotenoid content of carrot. J Agric Food Chem 43(3):589–591

    Google Scholar 

  4. Brown TA, Shrift A (2010) Selenium: toxicity and tolerance in higher plants. Biol Rev 57(1):59–84

    Google Scholar 

  5. Du XM, Yin WX, Zhao YX, Zhang H (2001) The production and scavenging of reactive oxygen species in plants. Chin J Biotechnol 17(2):121–125

    CAS  Google Scholar 

  6. Du HL, Feng LR, Niu ZF, Guo PY, Wang YX (2007) The effect of selenium on protection-enzyme activity and photosynthesis speed of lettuce. Chin Agric Sci Bull 23(5):226–229

    Google Scholar 

  7. Duan ML, Fu DD, Wang SS, Wang DL, Xue RL, Wu XP (2011) Effects of different selenite concentrations on plant growth, absorption and transportation of selenium in four different vegetables. Acta Sci Circum 31(3):658–665

    CAS  Google Scholar 

  8. Ellis DR, Salt DE (2003) Plants, selenium and human health. Curr Opin Plant Biol 6(3):273–279

    CAS  PubMed  Google Scholar 

  9. Fedoroff N, Schläppi M, Raina R (1995) Epigenetic regulation of the maize Spm transposon. BioEssays 17:291–297

    CAS  PubMed  Google Scholar 

  10. Finley JW (2005) Selenium accumulation in plant foods. Nutr Rev 63(6):196–202

    PubMed  Google Scholar 

  11. Gregorio SD, Lampis S, Malorgio F, Petruzzelli G, Pezzarossa B, Vallini G (2006) Brassica juncea can improve selenite and selenate abatement in selenium contaminated soils through the aid of its rhizospheric bacterial population. Plant Soil 285:233–239

    CAS  Google Scholar 

  12. Guo B, Zhou W, Ye Q, Huang B (2007) Biological characteristics and cultivation techniques of Cyphomandra betacea. Guangdong Agric Sci 12:102–103

    Google Scholar 

  13. Hao ZB, Cang J, Xu Z (2004) Plant physiology experiment. Harbin Institute of Technology Press, Harbin

    Google Scholar 

  14. Huang Y, Wang Q, Gao J, Lin Z, Bañuelos GS, Yuan L, Yin X (2013) Daily dietary selenium intake in a high selenium area of Enshi, China. Nutrients 5(3):700–710

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ikeda Y, Kinoshita T (2009) DNA demethylation: a lesson from the garden. Chromosoma 118:37–41

    CAS  PubMed  Google Scholar 

  16. Iqbal S, Kazi TG, Bhanger MI, Akhtar M, Sarfraz RA (2008) Determination of selenium content in selected Pakistani foods. Int J Food Sci Technol 43(2):339–345

    CAS  Google Scholar 

  17. Jiang YB, Ji HB, Li TT, Wang LX (2007) Advances of the research on the phytoremediation of the selenium polluted environment. Bull Mine Petr Geochem 26(1):98–104

    CAS  Google Scholar 

  18. Li KQ, Chen FB, Lin LJ, Liao MA, Huang KW, Li HX, Xu WW (2018) Effects of different concentrations of selenium on growth and selenium accumulation of Nasturtium officinale. J Sichuan Agric Univ 36(4):488–493, 519

  19. Li H, Wang J, Lin L, Liao M, Lv X, Tang Y, Wang X, Xia H, Liang D, Ren W, Jiang W (2019) Effects of mutual grafting on cadmium accumulation characteristics of first post-generations of Bidens pilosa L. and Galinsoga parviflora Cav. Environ Sci Pollut Res 26:33228–33235

    CAS  Google Scholar 

  20. Li Z, Zhu J, Wang Y, Lin L, Liao M, Wang J, Deng Q, Tang Y, Wang X, Wang J (2020) Effects of exogenous indole acetic acid on growth and cadmium accumulation of Cyphomandra betacea seedlings. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2020.172633

    Article  Google Scholar 

  21. Lin L, Yang D, Wang X, Liao M, Wang Z, Lv X, Tang F, Liang D, Xia H, Lai Y, Tang Y (2016) Effects of grafting on the cadmium accumulation characteristics of the potential Cd-hyperaccumulator Solanum photeinocarpum. Environ Monit Assess 188:82

    PubMed  Google Scholar 

  22. Lin L, Wu C, Wang J, Liao M, Yang D, Deng H, Lv X, Xia H, Liang D, Deng Q (2020) Effects of reciprocal hybridization on cadmium accumulation in F1 hybrids of two Solanum photeinocarpum ecotypes. Environ Sci Pollut Res 27:7120–7129

    CAS  Google Scholar 

  23. Liu DH, Zhou WB, Zhu DW, Liu W (2005) General survey on physiological function of selenium in plant. J Mount Agric Biol 24(3):253–259

    Google Scholar 

  24. Ma YH, Ding RX, Zhang JZ, Zhu WM (2001) Interaction of selenium and sulfur in plants. Plant Physiol J 37(2):161–166

    CAS  Google Scholar 

  25. Meng HB, Du X, Jiang YX, Pak H, Guo WL, Jiang LX (2010) Comparison between tetraploid turnip (Brassica rapa) and its diploid progenitor of DNA methylation under cadmium stress. J Nucl Agric Sci 24:1297–1304

    CAS  Google Scholar 

  26. Padmaja K, Prasad DDK, Prasad ARK (1989) Effect of selenium on chlorophyll biosynthesis in mung bean seedlings. Phytochemistry 28(12):3321–3324

    CAS  Google Scholar 

  27. Pezzarossa B, Petruzzelli G, Petacco F, Malorgio F, Ferri T (2007) Absorption of seleniumby Lactucasativa as affected by carboxymethylcellulose. Chemosphere 67:322–329

    CAS  PubMed  Google Scholar 

  28. Qu LZ, Yang SJ, Gao S, Wang HD, Lu XH (2010) Preliminary discussion on the effects of microelement selenium. Chin Agric Sci Bull 26(7):94–97

    Google Scholar 

  29. Rosenfeld I, Beath OA (1964) Selenium: geobotany, biochemistry, toxicity, and nutrition. Academic Press, New York

    Google Scholar 

  30. Shao SX, Zheng BS, Wang MS, Su HC (2006) Review of selenium-hyperaccumulator plants. Bull Mine Petr Geochem 25(z1):31–33

    Google Scholar 

  31. Shi YL, Luo SW (2005) The advanced research of trace selenium. J Xiangyang Vocat Tech Coll 4(1):108–110

    Google Scholar 

  32. Spallholz JE (1994) On the nature of selenium toxicity and carcinostatic activity. Free Radical Biol Med 17(1):45–64

    CAS  Google Scholar 

  33. Spallholz JE, Hoffman DJ (2002) Seleniumtoxicity: cause and effects inaquatic birds. Aquat Toxicol 57(2):27–37

    CAS  PubMed  Google Scholar 

  34. Steimer A, Amedeo P, Afsar K, Fransz P, Scheid OM, Paszkowski J (2000) Endogenous targets of transcriptional gene silencing in Arabidopsis. Plant Cell 12:1165–1178

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sun GX, Van de Wiele T, Alava P, Tack FMG, Du Laing G (2017) Bioaccessibility of selenium from cooked rice as determined in a simulator of the human intestinal tract (SHIME). J Sci Food Agric 97(11):3540–3545

    CAS  PubMed  Google Scholar 

  36. Temmerman LD, Waegeneers N, Thiry C, Laing GD, Rack F, Ruttens A (2014) Selenium content of Belgian cultivated soils and its uptake by field crops and vegetables. Sci Total Environ 468–469:77–82

    PubMed  Google Scholar 

  37. Wang B (2007) The role and safety of selenium is not the past. Middle-aged Elderly Health Care 21(5):48–49

    CAS  Google Scholar 

  38. Wang JW (2014) The effect of selenium on DNA methylation of processing tomato under salt stress and its relationship with salt resistance (master thesis). Shihezi University, Xinjiang

    Google Scholar 

  39. Wu D, Fang KM, Shen HF, Wan T, Lu J (2012) Comparative study on selenium- enriching ability of different types of vegetable in Leping City of Jiangxi. Acta Agric Jiangxi 24(7):23–24

    CAS  Google Scholar 

  40. Wu R, Wang X, Lin Y, Ma Y, Liu G, Yu X, Zhong S, Liu B (2013) Inter-species grafting caused extensive and heritable alterations of DNA methylation in Solanaceae plants. PLoS ONE 8:e61995

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu CF, Bao RF, Liao HP, Liu P, Sun J, Liao MA, Lin LJ, Ren W (2018) Selenium accumulation characteristics of wild vegetable Solanum photeinocarpum. J Sichuan Agric Univ 36(6):778–784

    Google Scholar 

  42. Xia YM (2013) Selenium. Acta Nutrimenta Sin 35(3):223–226

    CAS  Google Scholar 

  43. Xia H, Wang Y, Liao M, Lin L, Zhang F, Tang Y, Zhang H, Wang J, Liang D, Deng Q, Lv X, Chen C, Ren W (2020) Effects of different rootstocks on cadmium accumulation characteristics of the post-grafting generations of Galinsoga parviflora. Int J Phytoremediation 22:62–68

    CAS  PubMed  Google Scholar 

  44. Xiong LZ, Xu CG, Maroof MAF, Zhang Q (1999) Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol Genet Genomics 261:439–446

    CAS  Google Scholar 

  45. Xu D, Li H, Lin L, Liao M, Deng Q, Wang J, Lv X, Deng H, Liang D, Xia H (2020) Effects of carboxymethyl chitosan on the growth and nutrient uptake in Prunus davidiana seedlings. Physiol Mol Biol Plants. https://doi.org/10.1007/s12298-020-00791-5

    Article  PubMed  Google Scholar 

  46. Yang L (2019) Thinking on the present situation and development countermeasures of Cyphomandra betacea production in Tengchong City, Yunnan, China. South China Agric 13(5):113–114

    Google Scholar 

  47. Yao H, Zhang F, Qing M, ChenM LuZ, Zhang Q, Lin L, Liao M, Chen S, Huang Z, Chen C, Ren W (2019) Effects of mutual grafting on the cadmium accumulation characteristics of two ecotypes of Solanum photeinocarpum. Int J Phytoremediation 21:503–508

    CAS  PubMed  Google Scholar 

  48. Yu XZ, Gu JD (2007) Metabolic responses of weeping willows to selenate and selenite. Environ Sci Pollut Res 14:510–517

    CAS  Google Scholar 

  49. Yu T, Hou W, Hou Q, Ma W, Xia X, Li Y, Yan B, Yang Z (2020) Safe utilization and zoning on natural selenium-rich land resources: a case study of the typical area in Enshi County, China. Environ Geochem Health. https://doi.org/10.1007/s10653-020-00519-0

    Article  PubMed  Google Scholar 

  50. Zayed A, Lytle CM, Terry N (1998) Accumulation and volatilization of different chemical species of selenium by plants. Planta 206(2):284–292

    CAS  Google Scholar 

  51. Zhang W, Di ZC (2012) Research progress regarding the effect of exogenous selenium on vegetables. Acta Hortic Sin 39(9):1749–1756

    CAS  Google Scholar 

  52. Zhang DH, Wang QP, Ma XF (1998) Prospective tropical fruit and vegetable plant Cyphomandra betacea. Resour Dev Mark 14:209–210

    Google Scholar 

  53. Zhang XQ, Zhang H, Wang J, Zhang J (2009) Differences of accumulation and biological concentrator levels of selenium in different vegetables. Jiangsu Agric Sci 37(4):170–171

    Google Scholar 

  54. Zhang XF, Xia HP, Li ZA, Zhuang P, Gao B (2010) Potential of four forage grasses in remediation of Cd and Zn contaminated soils. Bioresour Technol 101:2063–2066

    CAS  PubMed  Google Scholar 

  55. Zhang X, Zhang F, Wang J, Lin L, Liao M, Tang Y, Sun G, Wang X, Lv X, Deng Q, Chen C, Ren W (2019) Cutting after grafting affects the growth and cadmium accumulation of Nasturtium officinale. Environ Sci Pollut Res 26:15436–15442

    CAS  Google Scholar 

  56. Zhao HJ, Liu PH, Sun QY, Tang WH, Liu JG, Liu YJ, Wang XL (2007) Development of selenium on preventing and curing tumors. Prog Vet Med 28(2):96–99

    Google Scholar 

  57. Zilberman D (2008) The evolving functions of DNA methylation. Curr Opin Plant Biol 11:554–559

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac) for editing the English text of a draft of this manuscript.

Author information

Affiliations

Authors

Contributions

LJL, JS, THC, XZ, YMH and LY performed the experiments, analysed the data, and drafted the manuscript. CFW planted and managed the materials. XMX, YXW, ZYL, JPZ and ZHW inoculated the seedlings and helped with sampling. LJL and MAL conceived the study, participated in its design and coordination, and helped draft the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ming’an Liao.

Ethics declarations

Conflict of interest

The authors declare no competing interests, including financial and non-financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Sun, J., Cui, T. et al. Selenium accumulation characteristics of Cyphomandra betacea (Solanum betaceum) seedlings. Physiol Mol Biol Plants 26, 1375–1383 (2020). https://doi.org/10.1007/s12298-020-00838-7

Download citation

Keywords

  • Cyphomandra betacea (Solanum betaceum) seedlings
  • Selenium
  • Physiological characteristics
  • Growth