Skip to main content
Log in

Terpene profiling, transcriptome analysis and characterization of cis-β-terpineol synthase from Ocimum

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Ocimum species produces a varied mix of different metabolites that imparts immense medicinal properties. To explore this chemo-diversity, we initially carried out metabolite profiling of different tissues of five Ocimum species and identified the major terpenes. This analysis broadly classified these five Ocimum species into two distinct chemotypes namely, phenylpropanoid-rich and terpene-rich. In particular, β-caryophyllene, myrcene, limonene, camphor, borneol and selinene were major terpenes present in these Ocimum species. Subsequently, transcriptomic analysis of pooled RNA samples from different tissues of Ocimum gratissimum, O. tenuiflorum and O. kilimandscharicum identified 38 unique transcripts of terpene synthase (TPS) gene family. Full-length gene cloning, followed by sequencing and phylogenetic analysis of three TPS transcripts were carried out along with their expression in various tissues. Terpenoid metabolite and expression profiling of candidate TPS genes in various tissues of Ocimum species revealed spatial variances. Further, putative TPS contig 19414 (TPS1) was selected to corroborate its role in terpene biosynthesis. Agrobacterium-mediated transient over-expression assay of TPS1 in the leaves of O. kilimandscharicum and subsequent metabolic and gene expression analyses indicated it as a cis-β-terpineol synthase. Overall, present study provided deeper understanding of terpene diversity in Ocimum species and might help in the enhancement of their terpene content through advanced biotechnological approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anand A, Jayaramaiah RH, Beedkar SD, Singh PA, Joshi RS, Mulani FA, Dholakia BB, Punekar SA, Gade WN, Thulasiram HV, Giri AP (2016) Comparative functional characterization of eugenol synthase from four different Ocimum species: implications on eugenol accumulation. Biochim Biophys Acta Proteins Proteomics 1864:1539–1547

    Article  CAS  Google Scholar 

  • Bach TJ (1995) Some new aspects of isoprenoid biosynthesis in plants—a review. Lipids 30:191–202

    Article  CAS  PubMed  Google Scholar 

  • Benabdelkader T, Guitton Y, Pasquier B, Magnard JL, Jullien F, Kameli A, Legendre L (2015) Functional characterization of terpene synthases and chemotypic variation in three lavender species of section stoechas. Physiol Plant 153:43–57

    Article  CAS  PubMed  Google Scholar 

  • Bohlmann J, Crock J, Jetter R, Croteau R (1998) Terpenoid based defenses in conifers: cDNA cloning, characterization, and functional expression of wound-inducible (E)- α bisabolene synthase from grand fir (Abies grandis). Proc Natl Acad Sci USA 95:6756–6761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke C, Croteau R (2002) Interaction with the small subunit of geranyl diphosphate synthase modifies the chain length specificity of geranylgeranyl diphosphate synthase to produce geranyl diphosphate. J Biol Chem 277:3141–3149

    Article  CAS  PubMed  Google Scholar 

  • Cane DE (1985) Isoprenoid biosynthesis stereochemistry of the cyclization of allylic pyrophosphates. Acc Chem Res 18:220–226

    Article  CAS  Google Scholar 

  • Cane DE (1990) Enzymic formation of sesquiterpenes. Chem Rev 90:1089–1103

    Article  CAS  Google Scholar 

  • Chen F, Tholl D, Bohlmann J, Pichersky E (2011) The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66:212–229

    Article  CAS  PubMed  Google Scholar 

  • Croteau R (1987) Biosynthesis and catabolism of monoterpenoids. Chem Rev 87:929–954

    Article  CAS  Google Scholar 

  • Davis EM, Croteau R (2000) Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes and diterpenes, vol 209. Springer, New York, pp 53–95

    Google Scholar 

  • Degenhardt J, Koellner TG, Gershenzon J (2009) Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70:1621–1637

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA (1999) Plant natural products: the molecular genetic basis of biosynthetic pathway. Curr Opin Biotech 10:192–197

    Article  CAS  PubMed  Google Scholar 

  • Eisenreich W, Schwarz M, Cartayrade A, Arigoni D, Zenk MH, Bacher A (1998) The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. Chem Biol 5:R221–R233

    Article  CAS  PubMed  Google Scholar 

  • Garcia R, Alves ESS, Santos MP, Aquije GMFV, Fernandes AAR, Santos RB, Ventura JA, Fernandes PMB (2008) Antimicrobial activity and potential use of monoterpenes as tropical fruits preservatives. Braz J Microbiol 39:163–168

    Article  PubMed  PubMed Central  Google Scholar 

  • Hampel D, Mosandl A, Wust M (2005) Biosynthesis of mono- and sesquiterpenes in carrot roots and leaves (Daucus carota L.): metabolic cross talk of cytosolic mevalonate and plastidial methylerythritol phosphate pathways. Phytochemistry 66:305–311

    Article  CAS  PubMed  Google Scholar 

  • Jennewein S, Croteau R (2001) Taxol: biosynthesis, molecular genetics, and biotechnological applications. Appl Microbiol Biot 57:13–19

    Article  CAS  Google Scholar 

  • Krithika R, Srivastava PL, Rani B, Kolet SP, Chopade M, Soniya M, Thulasiram HV (2015) Characterization of 10-hydroxygeraniol dehydrogenase from Catharanthus roseus reveals cascaded enzymatic activity in iridoid biosynthesis. Sci Rep 5:8258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacroix B, Citovsky V (2013) The roles of bacterial and host plant factors in Agrobacterium-mediated genetic transformation. Int J Dev Biol 57:467–481

    Article  CAS  PubMed  Google Scholar 

  • Lesburg CA, Caruthers JM, Paschall CM, Christianson DW (1998) Managing and manipulating carbocations in biology: terpenoid cyclase structure and mechanism. Curr Opin Struc Biol 8:695–703

    Article  CAS  Google Scholar 

  • Martin DM, Bohlmann J (2004) Identification of Vitis vinifera (−)-α-terpineol synthase by in silico screening of full-length cDNA ESTs and functional characterization of recombinant terpene synthase. Phytochemistry 65:1223–1229

    Article  CAS  PubMed  Google Scholar 

  • McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7:1015–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poulter CD (2006) Farnesyl diphosphate synthase. A paradigm for understanding structure and function relationships in E-polyprenyl diphosphate synthases. Phytochem Rev 5:17–26

    Article  CAS  Google Scholar 

  • Ramesha HJ, Anand A, Beedkar SD, Dholakia BB, Punekar SA, Kalunke RM, Gade WN, Thulasiram HV, Giri AP (2016) Functional characterization and transient expression manipulation of a new sesquiterpene synthase involved in β-caryophyllene accumulation in Ocimum. Biochem Biophys Res Commun 473:265–271

    Article  CAS  Google Scholar 

  • Rodriguez-Concepion M (2004) The MEP pathway: a new target for the development of herbicides, antibiotics and antimalarial drugs. Curr Pharm Des 10:2391–2400

    Article  Google Scholar 

  • Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295:517–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rynkiewicz MJ, Cane DE, Christianson DW (2001) Structure of trichodiene synthase from Fusarium sporotrichioides provides mechanistic inferences on the terpene cyclization cascade. Proc Natl Acad Sci USA 98:13543–13548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprenger GA, Schorken U, Wiegert T, Grolle S, de Graaf AA, Taylor SV, Begley TP, Bringer-Meyer S, Sahm H (1997) Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy-D-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol. Proc Natl Acad Sci USA 94:12857–12862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tantillo DJ (2011) Biosynthesis via carbocations: theoretical studies on terpene formation. Nat Prod Rep 28:1035–1053

    Article  CAS  PubMed  Google Scholar 

  • Thiel R, Adam KP (2002) An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants. Phytochemistry 59:269–274

    Article  CAS  PubMed  Google Scholar 

  • Thulasiram HV, Poulter CD (2006) Farnesyl diphosphate synthase: the art of compromise between substrate selectivity and stereoselectivity. J Am Chem Soc 128:15819–15823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams DC, McGarvey DJ, Katahira EJ, Croteau R (1998) Truncation of limonene synthase preprotein provides a fully active ‘pseudomature’ form of this monoterpene cyclase and reveals the function of the amino-terminal arginine pair. Biochemistry 37:12213–12220

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AA and SGL acknowledge Council of Scientific and Industrial Research (CSIR), New Delhi for SRF while SB acknowledges University Grants Commission, New Delhi, India for Kothari fellowship. The work was funded by CSIR-NCL-IGIB Joint Research program under XII Five Year Plan (BSC0124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok P. Giri.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, A., Jayaramaiah, R.H., Beedkar, S.D. et al. Terpene profiling, transcriptome analysis and characterization of cis-β-terpineol synthase from Ocimum. Physiol Mol Biol Plants 25, 47–57 (2019). https://doi.org/10.1007/s12298-018-0612-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-018-0612-6

Keywords

Navigation