Advertisement

Physiology and Molecular Biology of Plants

, Volume 24, Issue 6, pp 1221–1230 | Cite as

Characterization of hawthorn (Crataegus spp.) genotypes by SSR markers

  • Murat GüneyEmail author
  • Salih Kafkas
  • Hakan Keles
  • Servet Aras
  • Sezai Ercişli
Research Article

Abstract

Hawthorn (Crataegus spp.) is an edible wild fruit that is used in traditional medicine, landscape studies, and food and beverage industries in many countries. It is an important wild plant species in Turkey and is numerous in the Yozgat Province. Genetic and breeding studies on hawthorn are very limited. Therefore, we aimed to characterize 91 hawthorn genotypes using simple sequence repeat (SSR) markers. The SSRs were developed from apple and pear and were screened in hawthorn for amplification and polymorphisms. A total of 265 alleles were detected from thirty-two SSR primer pairs, and those were used to identify genetic relationships. The number of alleles ranged from 2 to 21 alleles per locus with a mean value of 8.28. The Hi05b09 locus showed the highest allele number (Na = 21). The polymorphism information content (PIC) values ranged from 0.16 (CH03d10) to 0.89 (C6554) with a mean value of 0.60. An Unweighted Pair Group Method with Arithmetic Average method was used to cluster the genotypes, and four major clusters were obtained from the amplification of the SSRs. STRUCTURE software identified four populations (ΔK = 4) and eight sub-populations (ΔK = 8), and four major clusters similar results to UPGMA analysis. Our study showed that the SSR markers could be utilized as a reliable tool for the determination of genetic variations and relationships of hawthorn genotypes. A basic molecular analysis on the hawthorn genotypes identified in this study will promote the collection of germplasm collection and the selection of parents’ in future cross-breeding studies.

Keywords

Hawthorn Crataegus spp. SSR Structure 

Notes

Acknowledgements

The authors thank the Bozok University Scientific Research Projects Unit (Project No. 6602c-ZF/17-95) for financial support.

Compliance with ethical standards

Conflict of interest

The authors state that they do not have any conflict of interest.

References

  1. Beigmohamadi M, Rahmani F (2011) Genetic variation in hawthorn (Crataegus spp.) using RAPD markers. Afr J Biotechnol 10(37):7131–7135Google Scholar
  2. Dai H, Guo X, Zhang Y, Li Y, Chang L, Zhang Z (2009) Application of random amplified polymorphic DNA and inter-simple sequence repeat markers in the genus Crataegus. Ann Appl Biol 154:175–181.  https://doi.org/10.1111/j.1744-7348.2008.00290.x CrossRefGoogle Scholar
  3. Dönmez AA (2004) The genus Crataegus L. (Rosaceae) with special reference to hybridisation and biodiversity in Turkey. Turk J Bot 28:29–37Google Scholar
  4. Doyle JJ, Doyle JL (1987) A Rapid isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  5. Emami A, Shabanian N, Rahmani MS, Khadivi A, Mohammad-Panah N (2018) Genetic characterization of the Crataegus genus: implications for in situ conservation. Sci Hortic 213:56–65.  https://doi.org/10.1016/j.scienta.2017.12.014 CrossRefGoogle Scholar
  6. Ercisli S (2004) A short review of the fruit germplasm resources of Turkey. Genet Resour Crop Evol 51:419–435.  https://doi.org/10.1023/B:GRES.0000023458.60138.79 CrossRefGoogle Scholar
  7. Erfani-Moghadam J, Mozafari M, Fazeli A (2016) Genetic variation of some hawthorn species based on phenotypic characteristics and RAPD marker. Biotechnol Biotechnol Equip 30(2):247–253.  https://doi.org/10.1080/13102818.2015.1121790 CrossRefGoogle Scholar
  8. Fan L, Zhang M, Liu Q, Li L, Song Y, Wang L, Zhang S, Wu J (2013) Transferability of newly developed pear SSR markers to other Rosaceae Species. Plant Mol Biol Rep 31(6):1271–1282.  https://doi.org/10.1007/s11105-013-0586-z CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fang S, Shu-ying C, Jia T, Peng L, Xue Q, Lei W, Shu-ping L, Jiang L (2017) Morphological and ISSR molecular markers reveal genetic diversity of wild hawthorns (Crataegus songorica K. Koch.) in Xinjiang China. J Integr Agric 16(11):2482–2495.  https://doi.org/10.1016/S2095-3119(17)61688-5 CrossRefGoogle Scholar
  10. Fernandez-Fernandez F, Harvey NG, James CM (2006) Isolation and characterization of polymorphic microsatellite markers from European pear (Pyrus communis L). Mol Ecol Notes 6:1039–1041.  https://doi.org/10.1111/j.1471-8286.2006.01422.x CrossRefGoogle Scholar
  11. Gasic K, Han Y, Kertbundit S, Shulaev V, Iezzoni AF, Stover EW, Bell RL, Wisniewski ME, Korban SS (2009) Characteristics and transferability of new apple EST-derived SSRs to other Rosaceae species. Mol Breed 23:397–411.  https://doi.org/10.1007/s11032-008-9243-x CrossRefGoogle Scholar
  12. Govan CL, Simpson DW, Johnson AW, Tobutt KR, Sargent DJ (2008) A reliable multiplexed microsatellite set for genotyping Fragaria and its use in a survey of 60 F. × ananassa cultivars. Mol Breed 22(4):649–661.  https://doi.org/10.1007/s11032-008-9206-2 CrossRefGoogle Scholar
  13. Guilford P, Prakash S, Zhu JM, Rikkerink E, Gardiner S, Bassett H, Forster R (1997) Microsatellites in Malus × domestica (apple): abundance, polymorphism and cultivar identification. Theor Appl Genet 94:249–254.  https://doi.org/10.1007/s001220050407 CrossRefGoogle Scholar
  14. Gülşen O, Mutlu N (2005) Bitki biliminde kullanılan genetik markörler ve kullanım alanları. Alatarım 4(2):27–37Google Scholar
  15. Han Y, Chagne D, Gasic K, Rikkerink EHA, Beever JE, Gardiner SE, Korban SS (2009) BAC-end sequence-based SNPs and Bin mapping for rapid integration of physical and genetic maps in apple. Genomics 93:282–288.  https://doi.org/10.1016/j.ygeno.2008.11.005 CrossRefPubMedGoogle Scholar
  16. Han Y, Zheng D, Vimolmangkang S, Khan MA, Beever JE, Korban SS (2011) Integration of physical and genetic maps in apple confirms whole-genome and segmental duplications in the apple genome. J Exp Bot 62(14):5117–5130.  https://doi.org/10.1093/jxb/err215 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hemmat M, Weeden NF, Brown SK (2003) Mapping and evaluation of Malus × domestica microsatellites in apple and pear. J Am Soc Hortic Sci 128:515–520Google Scholar
  18. Hokanson SC, Szewc-McFadden AK, Lamboy WF, McFerson JK (1998) Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus × domestica Borkh. core subset collection. Theor Appl Genet 97:671–683.  https://doi.org/10.1007/s001220050943 CrossRefGoogle Scholar
  19. Ikhsan AS, Topcu H, Sütyemez M, Kafkas S (2016) Novel 307 polymorphic SSR markers from BAC-end sequences in walnut (Juglans regia L.): effects of motif types and repeat lengths on polymorphism and genetic diversity. Sci Hortic 213:1–4.  https://doi.org/10.1016/j.scienta.2016.10.006 CrossRefGoogle Scholar
  20. Inoue E, Matsuki Y, Anzai H, Evans K (2007) Isolation and characterization of microsatellite markers in Japanese pear (Pyrus pyrifolia Nakai). Mol Ecol Notes 7:445–447.  https://doi.org/10.1111/j.1471-8286.2006.01612.x CrossRefGoogle Scholar
  21. Kafkas S, Özkan H, Ak BE, Açar I, Atlı HS, Koyuncu S (2006a) Detecting DNA polymorphism and genetic diversity in a wide pistachio germplasm: comparison of AFLP, ISSR and RAPD markers. J Am Soc Hortic Sci 131(4):522–529Google Scholar
  22. Kafkas S, Kaşka N, Wassimi AN, Padulosi S (2006b) Molecular characterisation of Afghan pistachio accessions by amplified fragment length polymorphisms (AFLPs). J Hortic Sci Biotechnol 81:864–868CrossRefGoogle Scholar
  23. Khiari S, Boussaid M, Messaoud C (2015) Genetic diversity and population structure in natural populations of Tunisian Azarole (Crataegus azarolus L. var. aronia L.) assessed by microsatellite markers. Biochem Syst Ecol 59:264–270.  https://doi.org/10.1016/j.bse.2015.01.025 CrossRefGoogle Scholar
  24. Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van de Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol Breed 10:217–241.  https://doi.org/10.1023/A:1020525906332 CrossRefGoogle Scholar
  25. Liu K, Muse SV (2005) PowerMarker: integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129CrossRefGoogle Scholar
  26. Lo EY, Stefanovic S, Dickinson TA (2009) Population genetic structure of diploid sexual and polyploid apomictic hawthorns (Crataegus; Rosaceae) in the Pacific Northwest. Mol Ecol 18:1145–1160.  https://doi.org/10.1111/j.1365-294X.2009.04091.x CrossRefPubMedGoogle Scholar
  27. MirAli N, Al-Odat M, Haider N, Nabulsi I (2011) The genus Crataegus L.: an ecological and molecular study. Russ J Genet 47(1):26–32.  https://doi.org/10.1134/S1022795410061018 CrossRefGoogle Scholar
  28. Moriya S, Iwanami H, Kotoda N, Haji T, Okada K, Terakami S, Mimida N, Yamamoto T, Abe K (2012) Aligned genetic linkage maps of apple rootstock cultivar ‘JM7’ and Malus sieboldii ‘Sanashi 63’ constructed with novel EST-SSRs. Tree Genet Genomes 8:709–723.  https://doi.org/10.1007/s11295-011-0458-3 CrossRefGoogle Scholar
  29. Nas MN (2012) Alıcın (Crataegus spp.) kültüre alınması: fırsatlar ve güçlükler. I. Ulusal Alıç Çalıştayı, Malatya, s, 3–8Google Scholar
  30. Oddou-Muratorio S, Aligon C, Decroocq S, Plomion C, Lamant T, Mush-Demesure B (2001) Microsatellite primers for Sorbus torminalis and related species. Mol Ecol Notes 1:297–299.  https://doi.org/10.1046/j.1471-8278.2001.00116.x CrossRefGoogle Scholar
  31. Özgen M, Adak S, Söylemezoğlu G, Ulukan H (2000) Bitki genetik kaynaklarının korunma ve kullanımında yeni yaklaşımlar. Türkiye Ziraat Mühendisliği 5. Teknik Kongresi, Ankara, s. 259–284Google Scholar
  32. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research—an update. Bioinformatics 28(19):2537–2539.  https://doi.org/10.1093/bioinformatics/bts460 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Potts SM, Han Y, Khan MA, Kushad MM, Rayburn AL, Korban SS (2012) Genetic diversity and characterization of a core collection of Malus germplasm using simple sequence repeats (SSRs). Plant Mol Biol Rep 30:827–837.  https://doi.org/10.1007/s11105-011-0399-x CrossRefGoogle Scholar
  34. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959PubMedPubMedCentralGoogle Scholar
  35. Rahmani MS, Shabanian N, Khadivi-Khub A, Woeste KE, Badakhshan H, Alikhani L (2015) Population structure and genotypic variation of Crataegus pontica inferred by molecular markers. Gene 572:123–129.  https://doi.org/10.1016/j.gene.2015.07.001 CrossRefPubMedGoogle Scholar
  36. Rajeb C, Messaoud C, Chograni H, Bejaoui A, Boulila A, Rejeb MN, Boussaid M (2010) Genetic diversity in Tunisian Crataegus azarolus L. var. aronia L. populations assessed using RAPD markers. Ann For Sci 67:512.  https://doi.org/10.1051/forest/2010014 CrossRefGoogle Scholar
  37. Rohlf FJ (2009) NTSYSpc: numerical taxonomy system, ver.2.21c. Setauket: Exeter PublishingGoogle Scholar
  38. Scheulke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234CrossRefGoogle Scholar
  39. Serce S, Simsek O, Toplu C, Kamiloglu O, Caliskan O, Gunduz K, Ozgen M, Kacar YA (2011) Relationships among Crataegus accessions sampled from Hatay, Turkey, as assessed by fruit characteristics and RAPD. Genet Resour Crop Evol 58:933–942.  https://doi.org/10.1007/s10722-010-9633-x CrossRefGoogle Scholar
  40. Silfverberg-Dilworth E, Matasci CL, Van de Weg WE, Van Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A (2006) Microsatellite markers spanning the apple (Malus x domestica Borkh.) genome. Tree Genet Genomes 2:202–224.  https://doi.org/10.1007/s11295-006-0045-1 CrossRefGoogle Scholar
  41. Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding: new tools for an old science. Nat Technol 7(3):257–264.  https://doi.org/10.1038/nbt0389-257 CrossRefGoogle Scholar
  42. Testolin R, Marrazzo T, Cipriani G, Quarta R, Verde I, Te Dettori M, Pancaldi M, Sansavini S (2000) Microsatellite DNA in peach (Prunus persica L. Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43(3):512–520CrossRefGoogle Scholar
  43. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kulper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23(21):4407–4414CrossRefGoogle Scholar
  44. Wang YZ, Zhang JH, Ning N, Sun HY, Yang L (2011) Construction and evaluation of a primary core collection of apricot germplasm in China. Sci Hortic 128:311–319.  https://doi.org/10.1016/j.scienta.2011.01.025 CrossRefGoogle Scholar
  45. Wang A, Aldwinckle H, Forsline P, Main D, Fazio G, Brown S, Xu K (2012) EST contig-based SSR linkage maps for Malus × domestica cv Royal Gala and an apple scab resistant accession of M. sieversii, the progenitor species of domestic apple. Mol Breed 29:379–397.  https://doi.org/10.1007/s11032-011-9554-1 CrossRefGoogle Scholar
  46. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Res 18(22):6531–6535CrossRefGoogle Scholar
  47. Yamamoto T, Kimura T, Sawamura Y, Manabe T, Kotobuki K, Hayashi T, Ban Y, Matsuta N (2002) Simple sequence repeats for genetic analysis in pear. Euphytica 124:129–137.  https://doi.org/10.1023/A:1015677505602 CrossRefGoogle Scholar
  48. Yilmaz KU, Yanar M, Ercisli S, Sahiner H, Taskin T, Zengin Y (2010) Genetic relationship among some hawthorn (Crataegus spp.) species and genotypes. Biochem Genet 48:873–878.  https://doi.org/10.1007/s10528-010-9368-6 CrossRefPubMedGoogle Scholar
  49. Zaloğlu S, Kafkas S, Doğan Y, Güney M (2015) Development and characterization of SSR markers from pistachio (Pistacia vera L.) and their transferability to eight Pistacia Species. Sci Hortic 189:94–103.  https://doi.org/10.1016/j.scienta.2015.04.006 CrossRefGoogle Scholar
  50. Zhang Y, Dai HY, Zhang QJ, Li H, Zhang ZH (2008) Assessment of genetic relationship in Crataegus genus by the apple SSR primers. J Fruit Sci 25(4):521–525Google Scholar
  51. Zietkiewicz E, Rafalski A, Damian L (1994) Genome fingerprinting by simple sequence repeat (SSR) anchored polymerase chain reaction amplification. Genomics 20(2):176–183.  https://doi.org/10.1006/geno.1994.1151 CrossRefPubMedGoogle Scholar

Copyright information

© Prof. H.S. Srivastava Foundation for Science and Society 2018

Authors and Affiliations

  • Murat Güney
    • 1
    Email author
  • Salih Kafkas
    • 2
  • Hakan Keles
    • 1
  • Servet Aras
    • 1
  • Sezai Ercişli
    • 3
  1. 1.Department of Horticulture, Faculty of AgricultureUniversity of Yozgat BozokYozgatTurkey
  2. 2.Department of Horticulture, Faculty of AgricultureUniversity of CukurovaAdanaTurkey
  3. 3.Department of Horticulture, Faculty of AgricultureUniversity of AtatürkErzurumTurkey

Personalised recommendations