Skip to main content

Advertisement

Log in

Exogenous melatonin trigger biomass accumulation and production of stress enzymes during callogenesis in medicinally important Prunella vulgaris L. (Selfheal)

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

The objective of the current study was to monitor the variations caused by the application of exogenous melatonin on growth kinetics and production of stress enzymes in Prunella vulgaris. Leaf and petiole explants were used for callogenesis. These explants were inoculated on Murashige and Skoog media containing various concentrations of melatonin alone or in combination with 2.0 mg/l naphthalene acetic acid. Herein, a maximum of 3.18-g/100 ml fresh biomass accumulation was observed on day 35 during log phase of growth kinetics at 1.0 mg/l melatonin concentration from leaf explants. While 0.5 and 1.0 mg/l melatonin enhanced the biomass accumulation from petiole explants. Moreover, the synergistic combination of melatonin and naphthalene acetic acid also promoted growth from leaf and petiole explants. Leaf derived callus cultures treated with 1.0 mg/l melatonin induced the production of total protein content (90.47 μg BSAE/mg FW) and protease activity (4.77 U/g FW). While the calli obtained from petiole explants have shown highest content of total protein (160.8 μg BSAE/mg FW) and protease activity (5.35 U/g FW) on media containing 0.5 mg/l melatonin. Similarly, 0.5 mg/l melatonin enhanced superoxide dismutase (3.011 nM/min/mg FW) and peroxidase (1.73 nM/min/mg FW) enzymes from leaf derived callus cultures. The combination of 1.0 and 1.5 mg/l naphthalene acetic acid enhanced content of total protein and protease activity in leaf and petiole derived cultures. These results suggested that the application of melatonin play a positive role in biomass accumulation and production of stress enzymes in P. vulgaris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Afreen F, Sm Zobayed, Kozai T (2006) Melatonin in Glycyrrhiza uralensis: response of plant roots to spectral quality of light and UV-B radiation. J Pineal Res 41:108–115

    Article  CAS  Google Scholar 

  • Ahmad P, Kumar A, Gupta A, Hu X, Kr Hakeem, Mm Azooz, Sharma S (2012) Polyamines: Role in Plants Under Abiotic Stress. Springer, Berlin

    Book  Google Scholar 

  • Ahmad N, Abbasi BH, Fazal H, Khan MA, Afridi MS (2014) Effects of reverse photoperiod on in vitro regeneration and piperine production in Piper nigrum. CR Biol 337:19–28

    Article  Google Scholar 

  • Ali M, Abbasi Bh, Haq IU (2013) Production of commercially important secondary metabolites and antioxidant activity in cell suspension cultures of Artemisia absinthium L. Ind Crop Prod 49:400–406

    Article  CAS  Google Scholar 

  • Arnao MB (2014) Phytomelatonin: discovery, content, and role in plants. Adv Bot. https://doi.org/10.1155/2014/815769

    Article  Google Scholar 

  • Arnao MB, Hernandez-Ruiz J (2009) Chemical stress by different agents the melatonin content of barley roots. J Pineal Res 6:295–299

    Article  Google Scholar 

  • Arnao MB, Hernandez-Ruiz J (2013) Growth conditions determine different melatonin levels in Lupinus albus L. J Pineal Res 55:149–155

    Article  CAS  Google Scholar 

  • Arnao MB, Hernandez-Ruiz J (2014) Melatonin: possible role as light-protector in plants. In: Radosevich JA (ed) UV radiation: properties, effects, and applications. Physics Research & Technology Series. Nova Science Publishing, Hauppauge, pp 79–92

    Google Scholar 

  • Banerjee S, Margulis L (1973) Mitotic arrest by melatonin. Exp Cell Res 78:314–318

    Article  CAS  Google Scholar 

  • Baque MA, Elgirban A, Lee EJ, Paek KY (2012) Sucrose regulated enhanced induction of anthraquinone, phenolics, flavonoids biosynthesis and activities of antioxidant enzymes in adventitious root suspension cultures of Morinda citrifolia (L.). Acta Physiol Plant 34:405–415

    Article  CAS  Google Scholar 

  • Catala A (2007) The ability of melatonin to counteract lipid peroxidation in biological membranes. Curr Mol Med 7:638–649

    Article  CAS  Google Scholar 

  • Chen CY, Wu G, Zhang MZ (2009) The effects and mechanism of action of Prunella vulgaris L. extract on Jurkat human T lymphoma cell proliferation. Chinese-German J Clin Oncol 8:426–429

    Article  CAS  Google Scholar 

  • Fazal H, Abbasi BH, Ahmad N, Ali M, Ali S (2016a) Sucrose induced osmotic stress and photoperiod regimes enhanced the biomass and production of antioxidant secondary metabolites in shake-flask suspension cultures of Prunella vulgaris L. Plant Cell Tiss Org Cult. https://doi.org/10.1007/s11240-015-0915-z

    Article  Google Scholar 

  • Fazal H, Abbasi BH, Ahmad N, Ali SS, Akbar F, Kanwal F (2016b) Correlation of different spectral lights with biomass accumulation and production of antioxidant secondary metabolites in callus cultures of medicinally important Prunella vulgaris L. J Photochem Photobiol B Biol 159:1–7

    Article  CAS  Google Scholar 

  • Fazal H, Abbasi BH, Ahmad N, Ali M (2016c) Elicitation of medicinally important antioxidant secondary metabolites with silver and gold nanoparticles in callus cultures of Prunella vulgaris L. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-016-2153-1

    Article  PubMed  Google Scholar 

  • Fazal H, Shinwari ZK, Ahmad N, Abbasi BH (2016d) Factors influencing in vitro seed germination, morphogenetic potential and correlation of secondary metabolism with tissue development in Prunella vulgaris L. Pak J Bot 48(1):193–200

    CAS  Google Scholar 

  • Fischer TW, Kleszczyński K, Hardkop LH, Kruse N, Zillikens D (2013) Melatonin enhances antioxidative enzyme gene expression (CAT, GPx, SOD), prevents their UVR-induced depletion, and protects against the formation of DNA damage (8-hydroxy-2’-deoxyguanosine) in ex vivo human skin. J Pineal Res 54:303–312

    Article  CAS  Google Scholar 

  • Galano A, Tan DX, Reiter RJ (2011) Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res 51:1–16

    Article  CAS  Google Scholar 

  • Garcia JJ, Reiter RJ, Guerrero JM, Escames G, Yu BP, Oh CHS, Munoz-Hoyos A (1997) Melatonin prevents changes in microsomal membrane fluidity during induced lipid peroxidation. FESP Lett 408:297–300

    Article  CAS  Google Scholar 

  • Giri L, Dhyani P, Rawat S, Bhatt ID, Nandi SK, Rawal RS, Pande V (2012) In vitro production of phenolic compounds and antioxidant activity in callus suspension cultures of Habenaria edgeworthii: a rare Himalayan medicinal orchid. Ind Crop Prod 39:1–6

    Article  CAS  Google Scholar 

  • Hardeland R (2012) Melatonin in aging and disease. Multiple consequences of reduced secretion, options and limits of treatment. Aging Dis 3:194–225

    PubMed  Google Scholar 

  • Hernandez-Ruiz J, Arnao MB (2008) Melatonin stimulates the expansion of etiolated lupin cotyledons. Plant Growth Regul 55:29–34

    Article  CAS  Google Scholar 

  • Hernandez-Ruiz J, Cano A, Arnao MB (2004) Melatonin: a growth-stimulating compound present in lupin tissues. Planta 220:140–144

    Article  CAS  Google Scholar 

  • Hernandez-Ruiz J, Cano A, Arnao MB (2005) Melatonin acts as a growth-stimulating compound in some monocot species. J Pineal Res 39:137–142

    Article  CAS  Google Scholar 

  • Huang C, Zg Qian, Zhong JJ (2013) Enhancement of ginsenoside biosynthesis in cell cultures of Panax ginseng by N, N’-dicyclohexylcarbodiimide elicitation. J Biotechnol 165:30–36

    Article  CAS  Google Scholar 

  • Jackson WT (1969) Regulation of mitosis II. Interaction of isopropyl Nphenylcarbamate and melatonin. J Cell Sci 5:745–755

    CAS  PubMed  Google Scholar 

  • Janas K, Posmyk M (2013) Melatonin, an underestimated natural substance with great potential for agricultural application. Acta Physiol Plant 35:3285–3292

    Article  CAS  Google Scholar 

  • Jones MPA, Yi Z, Murch SJ, Saxena PK (2007) Thidiazuron induced regeneration of Echinacea purpurea L. Micropropagation in solid and liquid culture systems. Plant Cell Rep 26:13–19

    Article  CAS  Google Scholar 

  • Karwasara VS, Dixit VK (2012) Culture medium optimization for camptothecin production in cell suspension cultures. Plant Biotechnol Rep. https://doi.org/10.1007/s11816-012-0270-z

    Article  Google Scholar 

  • Kolar J, Machackova I, Eder J et al (1997) Melatonin: occurrence and daily rhythm in Chenopodium rubrum. Phytochem 44:1407–1413

    Article  CAS  Google Scholar 

  • Lagrimini LM (1991) Wound-induced deposition of polyphenols in transgenic plants overexpressing peroxidase. Plant Physiol 96:577–583

    Article  CAS  Google Scholar 

  • LEE CWT, Shuler ML (2000) The effect of inoculum density and conditioned medium on the production of ajmalcine and catharanthine from immobilized Catharanthus roseus cells. Biotechnol Bioeng 67:61–71

    Article  CAS  Google Scholar 

  • Lei XY, Zhu RY, Zhang GY, Dai YR (2004) Attenuation of cold induced apoptosis by exogenous melatonin in carrot suspension cells: the possible involvement of polyamines. J Pineal Res 36:126–131

    Article  CAS  Google Scholar 

  • Li CH, Wang P, Wei Z, Liang D, Liu Ch, Yin L, Jia D, Fu M, Ma F (2012) The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. J Pineal Res 53:298–306

    Article  CAS  Google Scholar 

  • Liu GM, Jia XB, Wang HB, Feng L, Chen Y (2009) Review about current status of cancer prevention for the chemical composition or composition and function mechanism of Prunella vulgaris. J Chin Med Mater 3:1920–1926

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein Measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Matsubara K, Shigekazu K, Yoshioka T, Fujita Y, Yamada Y (1989) High density culture of Coptis japonica cells increases berberine production. J Chem Technol Biotechnol 46:61–69

    Article  CAS  Google Scholar 

  • McDonald CE, Chen LL (1965) The Lowry modification of the Folin reagent for determination of proteinase activity. Anal Biochem 10:175–177

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murch SJ, Saxena PK (2002) Melatonin: a potential regulator of plant growth and development. In Vitro Cell Dev Biol Plant 38:531–536

    Article  CAS  Google Scholar 

  • Murch SJ, Campbell SS, Saxena PK (2001) The role of serotonin and melatonin in plant morphogenesis: regulation of auxin induced root organogenesis in in vitro-cultured explants of St. John_s wort (Hypericum perforatum L.). In Vitro Cell Dev Biol Plant 37:786–793

    Article  CAS  Google Scholar 

  • Nagella P, Murthy HN (2010) Effects of macro elements and nitrogen source on biomass accumulation and withanolide, A production from cell suspension cultures of Withania somnifera (L.) Dunal. Plant Cell Tiss Org Cult 104:119–124

    Article  Google Scholar 

  • Nawaz MA, Jiao Y, Chen C, Shireen F, Zheng Z, Imtiaz M, Bie Z, Huang Y (2018) Melatonin pretreatment improves vanadium stress tolerance of watermelon seedlings by reducing vanadium concentration in the leaves and regulating melatonin biosynthesis and antioxidant-related gene expression. J Plant Physiol 220:115–127

    Article  CAS  Google Scholar 

  • Nayyar H, Gupta D (2006) Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants. Environ Exp Bot 58:106–113

    Article  CAS  Google Scholar 

  • Posmyk MM, Kuran H, Marciniak K, Janas KM (2008) Pre-sowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations. J Pineal Res 45:24–31

    Article  CAS  Google Scholar 

  • Rasool R, An Kamili, Ba Ganai, Akbar S (2009) Effect of BAP and NAA on Shoot Regeneration in Prunella vulgaris. J Nat Sci Math Qassim Univ 3:21–26

    Google Scholar 

  • Reiter RJ, Tang L, Garcia JJ, Mun Oz-Hoyos A (1997) Pharmacological actions of melatonin in oxygen radical pathophysiology. Life Sci 60:2255–2271

    Article  CAS  Google Scholar 

  • Sarropoulou VN, Therios IN, Dimassi-Theriou KN (2012) Melatonin promotes adventitious root regeneration in in vitro shoot tip explants of the commercial sweet cherry rootstocks CAB-6P (Prunus cerasus L.), Gisela 6 (P. cerasus × P. canescens), and MxM 60 (P. avium x P. mahaleb). J Pineal Res 52:38–46

    Article  CAS  Google Scholar 

  • Sheshadri SA, Nishanth MJ, Yamine V, Simon B (2018) Effect of Melatonin on the stability and expression of reference genes in Catharanthus roseus. Sci Rep. https://doi.org/10.1038/s41598-018-20474-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi H, Love J, Hu W (2017) Editorial: melatonin in plants. Front. Plant Sci. 8:1666. https://doi.org/10.3389/fpls.2017.01666

    Article  PubMed  PubMed Central  Google Scholar 

  • Shinwari ZK, Watanabe T, Rehman M, Youshikawa T (2006) A pictorial guide to Medicinal Plants of Pakistan. Kohat University of Science & Technology, Pakistan

    Google Scholar 

  • Szafranska K, Glinska S, Janas KM (2012) Changes in the nature of phenolic deposits after re-warming as a result of melatonin presowing treatment of Vigna radiata seeds. J Plant Physiol 169:34–40

    Article  CAS  Google Scholar 

  • Szafrańska K, Glińska S, Janas KM (2013) Ameliorative effect of melatonin on meristematic cells of chilled and re-warmed Vigna radiata roots. Biol Plant 57:91–96

    Article  Google Scholar 

  • Tan DX, Manchester LC, Helton P, Reiter RJ (2007) Phytoremediative capacity of plants enriched with melatonin. Plant Signal Behav 2:514–516

    Article  Google Scholar 

  • Tan DX, Hardeland R, Manchester LC, Paredes SD, Korkmaz A, Rm Sainz, Mayo JC, Fuentes-Broto L, Reiter RJ (2010) The changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness, sexual selection and fitness. Bio Rev 85:607–623

    Google Scholar 

  • Tan DX, Hardeland R, Manchester LC, Korkmaz A, Ma S, Rosales- Corral S, Reiter R (2012) Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J Exp Bot 63:577–597

    Article  CAS  Google Scholar 

  • Trejo-Espino JL, Rodriguez-Monroy M, Ej Vernon-Carter, Cruz-Sosa F (2011) Establishment and characterization of Prosopis laevigata (Humb. & Bonpl. Ex Willd) M.C. Johnst. cell suspension culture: a biotechnology approach for mesquite gum production. Acta Physiol Plant. https://doi.org/10.1007/s11738-010-0705-5

    Article  Google Scholar 

  • Uchendu EE, Shukla MR, Reed BM, Saxena PK (2013) Melatonin enhances the recovery of cryopreserved shoot tips of American elm (Ulmus americana L.). J Pineal Res 55:435–442

    CAS  PubMed  Google Scholar 

  • Venegas C, Garcia JA, Escames G, Ortiz F, Lopez A, Doerrier C, Garcia-Corzo L, Lopez LC, Reiter RJ (2012) Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations. J Pineal Res 52:217–227

    Article  CAS  Google Scholar 

  • Wang Y, Reiter RJ, Chan Z (2018) Phytomelatonin: a universal abiotic stress regulator. J Exp Bot 69:963–974

    Article  Google Scholar 

  • Zhang N, Zhao B, Hj Zhang, Weeda S, Yang C, Zc Yang, Guo YD (2013) Melatonin promotes water stress tolerance, lateral root formation, and seed germination in Cucumber (Cucumis sativus L.). J Pineal Res 54:15–23

    Article  CAS  Google Scholar 

  • Zhao Y, Lw Qi, Wm Wang, Pk Saxena, Cz Liu (2011a) Melatonin improves the survival of cryopreserved callus of Rhodiola Crenulata. J Pineal Res 50:83–88

    Article  CAS  Google Scholar 

  • Zhao Y, Qi LW, Wang WM, Saxena PK, Liu CZ (2011b) Melatonin improves the survival of cryopreserved callus of Rhodiola crenulata. J Pineal Res 50:83–88

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bilal Haider Abbasi or Nisar Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazal, H., Abbasi, B.H., Ahmad, N. et al. Exogenous melatonin trigger biomass accumulation and production of stress enzymes during callogenesis in medicinally important Prunella vulgaris L. (Selfheal). Physiol Mol Biol Plants 24, 1307–1315 (2018). https://doi.org/10.1007/s12298-018-0567-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-018-0567-7

Keywords

Navigation