Skip to main content
Log in

Adenine type and diphenyl urea derived cytokinins improve the postharvest performance of Iris germanica L. cut scapes

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

An experiment was designed to evaluate the effect of various adenine derived cytokinins (kinetin and 6-benzylaminopurine) and diphenyl urea cytokinin (thidiazuron) on the postharvest performance of cut scapes of Iris germanica. Flower scapes were harvested with the oldest bud at ‘1 day before anthesis stage’, brought to laboratory under water, cut to a uniform length of 35 cm, divided into three sets viz., kinetin (KIN), 6-benzyl aminopurine (BAP) and thidiazuron (TDZ). Each set of scapes was treated with a particular cytokinin alone or in combination with 0.1 M sucrose. TDZ was effective than KIN and BAP in improving the postharvest life of the I. germanica scapes by 5.4 days as compared to the control (untreated scapes held in distilled water). This was because of the minimum percentage of bud abortion by TDZ application. Cytokinin application resulted in increased antioxidant activity, higher protein and phenolic content, besides a decrease in specific protease activity and α-amino acids in the tepal tissues. Application of TDZ resulted in the maximum increase in the superoxide dismutase, catalase and ascorbate peroxidase activity in the tepal tissues. The scapes treated with BAP and KIN maintained higher carbohydrate content in the tissue samples as compared to control and TDZ treated scapes. TDZ and BAP application resulted in increased membrane stability because of the decreased lipoxygenase activity which prevented membrane lipid peroxidation. Among the cytokinins tested, TDZ proved to be the promising cytokinin in improving the postharvest performance of beautiful flowers of I. germanica scapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Meth Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Ahmad SS, Tahir I (2015) Storage protocol for improving the postharvest performance in cut scapes of Iris versicolor. Acta Hortic 1060:71–79

    Article  Google Scholar 

  • Ahmad SS, Tahir I (2016a) Increased oxidative stress, lipid peroxidation and protein degradation trigger senescence in Iris versicolor L. flowers. Physiol Mol Biol Plants 22(4):507–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad SS, Tahir I (2016b) How and why of flower senescence: understanding from models to ornamentals. Ind J Plant Physiol 21(4):446–456

    Article  Google Scholar 

  • Ahmad SS, Tahir I (2017) Regulatory role of phenols in flower development and senescence in the genus Iris. Ind J Plant Physiol 22(1):135–140

    Article  CAS  Google Scholar 

  • Ahmad SS, Tahir I, Shahri W (2013) Effect of different storage treatments on physiology and postharvest performance in cut scapes of three Iris Species. J Agric Sci Technol 15:323–331

    CAS  Google Scholar 

  • Arrom L, Munne-Bosch S (2012) Hormonal changes during flower development in floral tissues of Lilium. Planta 236:343–354

    Article  CAS  PubMed  Google Scholar 

  • Axerold B, Chesbrough TM, Laakso S (1981) Lipoxygenase from soybean. In: Lowenstein JM (ed) Methods enzymology. Academic Press, New York, pp 441–451

    Google Scholar 

  • Bartrina I, Jensen H, Novak O, Strnad M, Werner T, Schmulling T (2017) Gain-of-function mutants of the cytokinin receptors AHK2 and AHK3 regulate plant organ size, flowering time and plant longevity. Plant Physiol. https://doi.org/10.1104/pp.16.01903

    Article  PubMed  PubMed Central  Google Scholar 

  • Celikel FG, van Doorn WG (1995) Solute leakage, lipid peroxidation, and protein degradation during the senescence of Iris tepals. Plant Physiol 94:515–521

    Article  CAS  Google Scholar 

  • Celikel FG, van Doorn WG (2012) Endogenous ethylene does not regulate opening of unstressed Iris flowers but strongly inhibits it in water-stressed flowers. J Plant Physiol 169:1425–1429

    Article  CAS  PubMed  Google Scholar 

  • Chen GX, Asada K (1989) Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol 30:987–998

    Article  CAS  Google Scholar 

  • Cvikrova M, Sukhova LS, Eder J, Korableva NP (1994) Possible involvement of abscisic acid, ethylene and phenolic acids in potato tuber dormancy. Plant Physiol Biochem 32:685–691

    CAS  Google Scholar 

  • Danilova MN, Kudryakova NV, Doroshenko AS, Zabrodin DA, Rakhmankulova ZF, Oelmuller R, Kusnetsov VV (2017) Opposite roles of the Arabidopsis cytokinin receptors AHK2 and AHK3 in the expression of plastid genes and genes for the plastid transcriptional machinery during senescence. Plant Mol Biol 93(5):533–546

    Article  CAS  PubMed  Google Scholar 

  • Dar RA, Tahir I, Ahmad SS (2014a) Sugars and sugar alcohol have their say in the regulation of flower senescence in Dianthus chinensis L. Sci Hortic 174:24–28

    Article  CAS  Google Scholar 

  • Dar RA, Tahir I, Ahmad SS (2014b) Physiological and biochemical changes associated with flower development and senescence in Dianthus chinensis. Ind J Plant Physiol 19:215–221

    Article  Google Scholar 

  • Dek MSP, Padmanabhan P, Sherif S, Subramanium J, Paliyath G (2017) Upregulation of phosphatidylinositol 3- Kinase (P13K) enhances ethylene biosynthesis and accelerates flower senescence in transgenic Nicotiana tabacum L. Intl J Mol Sci 18(7):1533

    Article  Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa D, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Ferrante A, Sodi AM, Serra G (2009) Effect of thidiazuron and gibberellic acid on leaf yellowing of cut stock flowers. Cent Eur J Biol 4(4):461–468

    CAS  Google Scholar 

  • Fukuchi-Mizutani M, Ishiguro K, Nakayama T, Utsunomiya Y, Tanaka Y, Kusumi T, Ueda T (2000) Molecular and functional characterization of a rose lipoxygenase cDNA related to flower senescence. Plant Sci 160:129–137

    Article  CAS  PubMed  Google Scholar 

  • Have AT, Woltering EJ (1997) Ethylene biosynthetic genes are differentially expressed during carnation (Dianthus caryophyllus L.) flower senescence. Plant Mol Biol 34:89–97

    Article  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast I. Kinetics and stochiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hunter DA, Steele BC, Reid MS (2002) Identification of genes associated with perianth senescence in daffodil (Narcissus Pseudonarcissus L. “Dutch master”). Plant Sci 163:13–21

    Article  CAS  Google Scholar 

  • Hunter DA, Ferranti A, Vernieri P, Reid MS (2004) Role of abscisic acid in perianth senescence of daffodil (Narcissus Pseudonarcissus “Dutch master”). Physiol Plant 121:313–321

    Article  CAS  PubMed  Google Scholar 

  • Ichimura K, Shimizu-Yumoto H, Goto R (2009) Ethylene production by the gynoecium and receptacle is associated with sepal abscission in cut Delphinium flowers. Postharvest Biol Technol 52:262–267

    Article  Google Scholar 

  • Imsabai W, van Doorn WG (2013) Effects of auxin, gibberellin, and cytokinin on petal blackening and flower opening in cut lotus flowers (Nelumbo nucifera). Postharvest Biol Technol 75:54–57

    Article  CAS  Google Scholar 

  • Iqbal N, Khan NA, Ferrante A, Trivellini A, Francini A, Khan MIR (2017) Ethylene role in plant growth, development and senescence. Interaction with other phytohormones. Front Plant Sci 8:475. https://doi.org/10.3389/tpls.2017.004575

    Article  PubMed  PubMed Central  Google Scholar 

  • Javid MG, Sorooshzadeh A, Sanavy SAMM, Allahdadi I, Moradi F (2011) Effects of the exogenous application of auxin and cytokinin on carbohydrate accumulation in grains of rice under salt stress. Plant Growth Regul 65:305–313

    Article  Google Scholar 

  • Jones ML, Chaffin GS, Eason JR, Clark DG (2005) Ethylene sensitivity regulates proteolytic activity and cysteine protease gene expression in Petunia corollas. J Exp Bot 56:2733–2744

    Article  CAS  PubMed  Google Scholar 

  • Lattanzio M, Lattanzio VMT, Cardinali A (2006) Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochem Adv Res 661:23–67

    Google Scholar 

  • Lee AK, Rhee SR, Suh JK, Cha HC (2005) Development of floral organ and physiochemical changes of cut Iris hollandica ‘Blue Magic’ according to plant growth regulators and storage temperature. Acta Hortic 673:315–321

    Article  CAS  Google Scholar 

  • Liu C, Li F, Gai S, Zhang Y, Zhah X, Lu X, Zheng G (2016a) Screening and identification of genes associated with flower senescence in tree Peony (Paeonia × Suffnuticosa Andrews) using suppression subtractive hybridization. J Hortic Sci Biotechnol 92(2):146–154

    Article  Google Scholar 

  • Liu T, Longhurst AD, Talavera-Rauh F, Hokin SA, Barton MK (2016b) The Arabidopsis transcription factor ABIG1 relays ABA signaled growth inhibition and drought induced senescence. eLife 5:1–19

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  • Lukaszewski TA, Reid MS (1989) Bulb-type flower senescence. Acta Hortic 261:59–62

    Article  Google Scholar 

  • Macnish AJ, Jiang CZ, Negre-Zakharov F, Reid MS (2010a) Physiological and molecular changes during opening and senescence of Nicotiana mutabilis flowers. Plant Sci 179(3):267–272

    Article  CAS  Google Scholar 

  • Macnish AJ, Jiang CZ, Reid MS (2010b) Treatment with thidiazuron improves opening and vase life of iris flowers. Postharvest Biol Technol 56:77–84

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Mor Y, Spiegelstein H, Halevy AH (1983) Inhibition of ethylene biosynthesis in carnation petals by cytokinin. Plant Physiol 71:541–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortazavi SN, Talebi SF, Naderi RA, Sharafi Y (2011) Regulation of ethylene biosynthesis by nitric acid and thidiazuron during postharvest of rose. J Med Plant Res 5(20):5177–5183

    CAS  Google Scholar 

  • Mwangi M, Chatterjee SR, Bhattacharjee SK (2003) Changes in the biochemical constituents of “Golden gate” cut rose petals as affected by precooling with ice cold water spray, pulsing and packaging. J Plant Biol 30:95–97

    Google Scholar 

  • Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153:375–380

    CAS  Google Scholar 

  • Nisar S, Tahir I, Ahmad SS (2015) Modulation of flower senescence in Nicotiana plumabinifolia by polyamines. Ind J Plant Physiol 20:186–190

    Article  Google Scholar 

  • Pak C, van Doorn WG (2005) Delay of Iris flower senescence by protease inhibitors. New Phytol 165:473–480

    Article  CAS  PubMed  Google Scholar 

  • Panavas T, Rubinstein B (1998) Oxidative events during programmed cell death of daylily (Hemerocallis hybrid) petals. Plant Sci 133:25–138

    Article  Google Scholar 

  • Petit-Paly G, Franck T, Brisson L, Kevers C, Chenieux C, Rideau M (1999) Cytokinin modulates catalase activity and coumarin accumulation in in vitro cultures of tobacco. J Plant Physiol 155:9–15

    Article  CAS  Google Scholar 

  • Price AM, Orellana DFA, Salleh FM, Stevens R, Acock R, Buchanan-Wollaston V, Stead AD, Rogers HJ (2008) A comparison of leaf and petal senescence in wallflower reveals common and distinct patterns of gene expression and physiology. Plant Physiol 147(4):1898–1912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radio MC, Arrom L, Puig S, Munne-Bosch S (2017) Hormonal sensitivity decreases during the progression of flower senescence in Lilium longiflorum. J Plant Growth Regul 36(2):402–412

    Article  Google Scholar 

  • Reid MS, Wu MJ (2018) Ethylene in flower development and senescence. In: Mattoo AK, Suttle JC (eds) The plant hormone ethylene. CRC Press Taylor and Francis Group, Boca Raton, pp 4–32

    Google Scholar 

  • Rogers HJ (2013) From models to ornamentals: how is flower senescence regulated? Plant Mol Biol 82:563–574

    Article  CAS  PubMed  Google Scholar 

  • Rosen H (1957) A modified ninhydrin colorimetric analysis for amino acids. Arch Biochem Biophys 67(1):10–15

    Article  CAS  PubMed  Google Scholar 

  • Saeed T, Hassan I, Abbasi NA, Jilani G (2014) Effect of gibberellic acid on the vase life and oxidative activities in senescing cut gladiolus flowers. Plant Growth Regul 72:89–95

    Article  CAS  Google Scholar 

  • Sairam RK (1994) Effect of moisture stress on physiological activities of two contrasting wheat genotypes. Indian J Exp Biol 32:584–593

    Google Scholar 

  • Sankhla N, Mackay WA, Davis TD (2005) Effect of thidiazuron on senescence of flowers in cut inflorescences of Lupinus densiflorus Benth. Acta Hortic 669:239–244

    Article  CAS  Google Scholar 

  • Schmitzer V, Veberic R, Osterc G, Stampar F (2010) Color and phenolic content changes during flower development in groundcover rose. J Am Soc Hortic Sci 135(3):195–202

    Google Scholar 

  • Schnablova R, Synkova H, Vicankova A, Burketova L, Ederc J, Cvikrova M (2006) Transgenic ipt tobacco overproducing cytokinins over accumulates phenolic compounds during in vitro growth. Plant Physiol Biochem 44:526–534

    Article  CAS  PubMed  Google Scholar 

  • Shahri W, Tahir I (2014) Flower senescence: some molecular aspects. Planta 239:277–297

    Article  CAS  PubMed  Google Scholar 

  • Shibuya K, Ichimura K (2016) Physiology and molecular biology of flower senescence. In: Pareek S (ed) Postharvest ripening physiology of crops. CRC Press, Boca Raton, pp 109–129

    Google Scholar 

  • Siranidou E, Kang Z, Buchnauer H (2002) Studies on symptom development, phenolic compounds and morphological defense responses in wheat cultivars differing in resistance to Fusarium head blight. J Phytopathol 150:200–208

    Article  Google Scholar 

  • Sui S, Luo J, Liu D, Ma J, Men W, Fan L, Bai Y, Li M (2015) Effects of hormone treatments on cut flower opening and senescence in Wintersweet (Chimonanthus praecox). HortScience 50:1365–1369

    CAS  Google Scholar 

  • Swain T, Hillis WE (1959) The phenolic constituents of Prunus domestica I. The quantitative analysis of phenolic constituents. J Sci Food Agric 10(1):63–68

    Article  CAS  Google Scholar 

  • Synkova H, Semoradova S, Schnablova R, Witters E, Husak M, Valcke R (2006) Cytokinin-induced activity of antioxidant enzymes in transgenic Pssu-ipt tobacco during plant ontogeny. Biol Plant 50(1):31–41

    Article  CAS  Google Scholar 

  • Tassoni A, Accettulli P, Bagni N (2006) Exogenous spermidine delays senescence of Dianthus caryophyllus flowers. Plant Biosyst 140:107–114

    Article  Google Scholar 

  • Tayyab S, Qamar S (1992) A look into enzyme kinetics: some introductory experiments. Biochem Educ 20(2):116–118

    Article  CAS  Google Scholar 

  • Towne G, Owensby C (1983) Cytokinins effect on protein and chlorophyll content of big bluestem leaves. J Range Manag 36(1):75–77

    Article  CAS  Google Scholar 

  • Tripathi SK, Tuteja N (2007) Integrated signalling in flower senescence. Plant Signal Behav 2(6):437–445

    Article  PubMed  PubMed Central  Google Scholar 

  • Trivellini A, Cocetta G, Vernieri P, Mensuali-Sodi A, Ferrante A (2014) Effect of cytokinins on delaying petunia flower senescence: a transcriptomic approach. Plant Mol Biol 87:169–180

    Article  PubMed  Google Scholar 

  • van Doorn WG (2004) Is petal senescence due to sugar starvation? Plant Physiol 134:35–42

    Article  PubMed  PubMed Central  Google Scholar 

  • van Doorn WG, Woltering EJ (2008) Physiology and molecular biology of petal senescence. J Exp Bot 59(3):453–480

    Article  PubMed  Google Scholar 

  • van Doorn WG, Harkema H, Song JS (1995) Water relations and senescence of cut Iris flowers: effects of cycloheximide. Postharvest Biol Technol 5:345–351

    Article  CAS  Google Scholar 

  • van Doorn WG, Sinz A, Tomassen MM (2003) Daffodil flowers delay senescence in cut Iris flowers. Phytochemistry 65:571–577

    Google Scholar 

  • van Doorn WG, Celikel FG, Pak C, Harkema H (2013) Delay of Iris flower senescence by cytokinins and jasmonates. Physiol Plant 148:105–120

    Article  PubMed  Google Scholar 

  • Williamson VG, Hepwonth G (2018) An investigation of ethylene sensitivity in three Australian native of cut flower genera Calothamnus, Grevillea and Philotheca. Sci Hortic 230:149–154

    Article  CAS  Google Scholar 

  • Xu X, Gookin T, Jiang C, Reid MS (2007) Genes associated with opening and senescence of Mirabilis jalapa flowers. J Exp Bot 58:2193–2201

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. S. Farooq for his influence through the opportunities he provided and insights he conveyed. Dr. Syed Sabhi Ahmad thanks University Grants Commission, Govt. of India for providing SRF under (UGC-BSR) SRF scheme.

Author’s contribution

Syed Sabhi Ahmad carried out the experiments, obtained results, analyzed, compiled the data and drafted the manuscript. Prof. Inayatullah Tahir helped in designing the experiment, supervised the laboratory work, took the photographs and edited the manuscript. Arif Shafi Wani, Riyaz Ahmad Dar and Shaziya Nisar helped in statistical analysis of the data and in the laboratory work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inayatullah Tahir.

Ethics declarations

Conflict of interest

The authors don’t have any conflict of interest regarding this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, S.S., Tahir, I., Wani, A.S. et al. Adenine type and diphenyl urea derived cytokinins improve the postharvest performance of Iris germanica L. cut scapes. Physiol Mol Biol Plants 24, 1127–1137 (2018). https://doi.org/10.1007/s12298-018-0554-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-018-0554-z

Keywords

Navigation