Advertisement

Physiology and Molecular Biology of Plants

, Volume 24, Issue 3, pp 369–378 | Cite as

Selection and validation of reference genes for quantitative gene expression analyses in various tissues and seeds at different developmental stages in Bixa orellana L.

  • Viviane S. Moreira
  • Virgínia L. F. Soares
  • Raner J. S. Silva
  • Aurizangela O. Sousa
  • Wagner C. Otoni
  • Marcio G. C. Costa
Research Article

Abstract

Bixa orellana L., popularly known as annatto, produces several secondary metabolites of pharmaceutical and industrial interest, including bixin, whose molecular basis of biosynthesis remain to be determined. Gene expression analysis by quantitative real-time PCR (qPCR) is an important tool to advance such knowledge. However, correct interpretation of qPCR data requires the use of suitable reference genes in order to reduce experimental variations. In the present study, we have selected four different candidates for reference genes in B. orellana, coding for 40S ribosomal protein S9 (RPS9), histone H4 (H4), 60S ribosomal protein L38 (RPL38) and 18S ribosomal RNA (18SrRNA). Their expression stabilities in different tissues (e.g. flower buds, flowers, leaves and seeds at different developmental stages) were analyzed using five statistical tools (NormFinder, geNorm, BestKeeper, ΔCt method and RefFinder). The results indicated that RPL38 is the most stable gene in different tissues and stages of seed development and 18SrRNA is the most unstable among the analyzed genes. In order to validate the candidate reference genes, we have analyzed the relative expression of a target gene coding for carotenoid cleavage dioxygenase 1 (CCD1) using the stable RPL38 and the least stable gene, 18SrRNA, for normalization of the qPCR data. The results demonstrated significant differences in the interpretation of the CCD1 gene expression data, depending on the reference gene used, reinforcing the importance of the correct selection of reference genes for normalization.

Keywords

Normalizer genes Endogenous genes Quantitative real time Stability Gene expression 

Notes

Acknowledgements

This work was supported by research grants from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, Brazil), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasília, Brazil) and UESC (Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil). We gratefully acknowledge the Ph.D. scholarship provided by CAPES Foundation to VSM.

Authors’ contributions

VSM conducted the experiments. VSM, VLFS, RJSS and AOS analyzed the data. VSM drafted the manuscript. VLFS, WCO and MGCC supported the project and designed the experiments. VLFS and MGCC revised the manuscript. All authors read and approved the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Research involving human participants and/or animals

The authors declare that the present study does not involve any human participants and/or animals.

Informed consent

The authors declare that the present study does not involve any informed consent.

Supplementary material

12298_2018_528_MOESM1_ESM.docx (646 kb)
Supplementary material 1 (DOCX 645 kb)

References

  1. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250.  https://doi.org/10.1158/0008-5472.CAN-04-0496 CrossRefPubMedGoogle Scholar
  2. Borowski JM, Galli V, da Silva Messias R, Perin EC, Buss JH, Silva SDDA, Rombaldi CV (2014) Selection of candidate reference genes for real-time PCR studies in lettuce under abiotic stresses. Planta 239:1187–1200.  https://doi.org/10.1007/s00425-014-2041-2 PubMedGoogle Scholar
  3. Cárdenas-Conejo Y, Carballo-Uicab V, Lieberman M, Aguilar-Espinosa M, Comai L, Rivera-Madrid R (2015) De novo transcriptome sequencing in Bixa orellana to identify genes involved in methylerythritol phosphate, carotenoid and bixin biosynthesis. BMC Genom 16:877.  https://doi.org/10.1186/s12864-015-2065-4 CrossRefGoogle Scholar
  4. Derveaux S, Vandesompele J, Hellemans J (2010) How to do successful gene expression analysis using real-time. Methods 50:227–230.  https://doi.org/10.1016/j.ymeth.2009.11.001 CrossRefPubMedGoogle Scholar
  5. Dheda K, Huggett JF, Bustin SA, Johnson MA, Rook G, Zumla A (2004) Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 37:112–114PubMedGoogle Scholar
  6. Dong L, Sui C, Liu Y, Yang Y, Wei J, Yang Y (2011) Validation and application of reference genes for quantitative gene expression analyses in various tissues of Bupleurum chinense. Mol Biol Rep 38:5017–5023.  https://doi.org/10.1007/s11033-010-0648-3 CrossRefPubMedGoogle Scholar
  7. Figueiredo A, Loureiro A, Batista D, Monteiro F, Várzea V, Pais MS, Gichuru EK, Silva MC (2013) Validation of reference genes for normalization of qPCR gene expression data from Coffea spp. hypocotyls inoculated with Colletotrichum kahawae. BMC Res Notes 6:388.  https://doi.org/10.1186/1756-0500-6-388 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Galli V, Borowski JM, Perin EC, da Silva Messias R, Labonde J, IdosS Pereira, Silva SD, Rombaldi CV (2015) Validation of reference genes for accurate normalization of gene expression for real time-quantitative PCR in strawberry fruits using different cultivars and osmotic stresses. Gene 554:205–214.  https://doi.org/10.1016/j.gene.2014.10.049 CrossRefPubMedGoogle Scholar
  9. Gantasala NP, Papolu PK, Thakur PK, Kamaraju D, Sreevathsa R, Rao U (2013) Selection and validation of reference genes for quantitative gene expression studies by real-time PCR in eggplant (Solanum melongena L). BMC Res Notes 6:312.  https://doi.org/10.1186/1756-0500-6-312 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Giuliano G, Rosati C, Bramley PM (2003) To dye or not to dye: biochemistry of annatto unveiled. Trends Biotechnol 21:513–516.  https://doi.org/10.1016/j.tibtech.2003.10.001 CrossRefPubMedGoogle Scholar
  11. Guénin S, Mauriat M, Pelloux J, Van Wuytswinkel O, Bellini C, Gutierrez L (2009) Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. J Exp Bot 60:487–493.  https://doi.org/10.1093/jxb/ern305 CrossRefPubMedGoogle Scholar
  12. Gutierrez L, Mauriat M, Guénin S, Pelloux J, Lefebvre JF, Louvet R, Rusterucci C, Moritz T, Guerineau F, Bellini C, Van Wuytswinkel O (2008) The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol J 6:609–618.  https://doi.org/10.1111/j.1467-7652.2008.00346.x CrossRefPubMedGoogle Scholar
  13. Kanakachari M, Solanke AU, Prabhakaran N, Ahmad I, Dhandapani G, Jayabalan N, Kumar PA (2016) Evaluation of suitable reference genes for normalization of qPCR gene expression studies in brinjal (Solanum melongena L.) during fruit developmental stages. Appl Biochem Biotechnol 178:433–450.  https://doi.org/10.1007/s12010-015-1884-8 CrossRefPubMedGoogle Scholar
  14. Kundu A, Patel A, Pal A (2013) Defining reference genes for qPCR normalization to study biotic and abiotic stress responses in Vigna mungo. Plant Cell Rep 32:1647–1658.  https://doi.org/10.1007/s00299-013-1478-2 CrossRefPubMedGoogle Scholar
  15. Mercadante AZ, Pfander H (1998) Carotenoids from annatto: a review. Recent Res Devel Agric Food Chem 2:79–91Google Scholar
  16. Mercadante AZ, Steck A, Pfander H (1997) Isolation and identification of new apocarotenoids from annatto (Bixa orellana) seeds. J Agric Food Chem 45:1050–1054.  https://doi.org/10.1021/jf960412k CrossRefGoogle Scholar
  17. Moreira VS, Rebouças TNH, de Moraes MOB, São José AR, da Silva MV (2014) Atividade antioxidante de urucum (Bixa orellana L.) in natura e encapsulado. Rev Iberoam Tecnol Postcosecha 15:201–209Google Scholar
  18. Moreira PA, Lins J, Dequigiovanni G, Veasey EA, Clement CR (2015) The domestication of annatto (Bixa orellana) from Bixa urucurana in Amazonia. Econ Bot 69:127.  https://doi.org/10.1007/s12231-015-9304-0 CrossRefGoogle Scholar
  19. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515.  https://doi.org/10.1023/B:BILE.0000019559.84305.47 CrossRefPubMedGoogle Scholar
  20. Rodríguez-Ávila NL, Narváez-Zapata JA, Aguilar-Espinosa M, Rivera-Madrid R (2011a) Regulation of pigment-related genes during flower and fruit development of Bixa orellana. Plant Mol Biol Rep 29:43–50.  https://doi.org/10.1007/s11105-010-0207-z CrossRefGoogle Scholar
  21. Rodríguez-Ávila NL, Narvaez-Zapata JA, Ramírez-Benítez JE, Aguilar-Espinosa ML, Rivera-Madrid R (2011b) Identification and expression pattern of a new carotenoid cleavage dioxygenase gene member from Bixa orellana. J Exp Bot 62:5385–5395.  https://doi.org/10.1093/jxb/err201 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Shivhare R, Lata C (2016) Selection of suitable reference genes for assessing gene expression in pearl millet under different abiotic stresses and their combinations. Sci Rep 6:23036.  https://doi.org/10.1038/srep23036 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Silver N, Best S, Jiang J, Thein SL (2006) Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol 7:33.  https://doi.org/10.1186/1471-2199-7-33 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Soares VL, Rodrigues SM, de Oliveira TM, De Queiroz TO, Lima LS, Hora-Júnior BT, Gramacho KP, Micheli F, Cascardo JCM, Otoni WC, Gesteira AS, Costa MGC (2011) Unraveling new genes associated with seed development and metabolism in Bixa orellana L. by expressed sequence tag (EST) analysis. Mol Biol Rep 38:1329–1340.  https://doi.org/10.1007/s11033-010-0234-8 CrossRefPubMedGoogle Scholar
  25. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(research0034):1.  https://doi.org/10.1186/gb-2002-3-7-research0034 Google Scholar
  26. Wei L, Miao H, Zhao R, Han X, Zhang T, Zhang H (2013) Identification and testing of reference genes for sesame gene expression analysis by quantitative real-time PCR. Planta 237:873–889.  https://doi.org/10.1007/s00425-012-1805-9 CrossRefPubMedGoogle Scholar
  27. Xie F, Xiao P, Chen D, Xu L, Zhang B (2012) miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol 80:75–84.  https://doi.org/10.1007/s11103-012-9885-2 CrossRefGoogle Scholar
  28. Xu X, Liu X, Chen S, Li B, Wang X, Fan C, Wang G, Hanwen N (2016) Selection of relatively exact reference genes for gene expression studies in flixweed (Descurainia sophia) by quantitative real-time polymerase chain reaction. Pestic Biochem Physiol 127:59–66.  https://doi.org/10.1016/j.pestbp.2015.09.007 CrossRefPubMedGoogle Scholar
  29. Zhao S, Fernald RD (2005) Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol 12:1047–1064.  https://doi.org/10.1089/cmb.2005.12.1047 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Prof. H.S. Srivastava Foundation for Science and Society 2018

Authors and Affiliations

  • Viviane S. Moreira
    • 1
  • Virgínia L. F. Soares
    • 1
  • Raner J. S. Silva
    • 1
  • Aurizangela O. Sousa
    • 2
  • Wagner C. Otoni
    • 3
  • Marcio G. C. Costa
    • 1
  1. 1.Departamento de Ciências BiológicasUniversidade Estadual de Santa CruzIlhéusBrazil
  2. 2.Departamento de Tecnologia e Ciências SociaisUniversidade do Estado da BahiaJuazeiroBrazil
  3. 3.Departamento de Biologia VegetalUniversidade Federal de ViçosaViçosaBrazil

Personalised recommendations