Physiology and Molecular Biology of Plants

, Volume 24, Issue 3, pp 379–387 | Cite as

Proteomics assisted profiling of antimicrobial peptide signatures from black pepper (Piper nigrum L.)

  • P. Umadevi
  • M. Soumya
  • Johnson K. George
  • M. Anandaraj
Research Article


Plant antimicrobial peptides are the interesting source of studies in defense response as they are essential components of innate immunity which exert rapid defense response. In spite of abundant reports on the isolation of antimicrobial peptides (AMPs) from many sources, the profile of AMPs expressed/identified from single crop species under certain stress/physiological condition is still unknown. This work describes the AMP signature profile of black pepper and their expression upon Phytophthora infection using label-free quantitative proteomics strategy. The differential expression of 24 AMPs suggests that a combinatorial strategy is working in the defense network. The 24 AMP signatures belonged to the cationic, anionic, cysteine-rich and cysteine-free group. As the first report on the possible involvement of AMP signature in Phytophthora infection, our results offer a platform for further study on regulation, evolutionary importance and exploitation of theses AMPs as next generation molecules against pathogens.


Proteomics Antimicrobial peptides Differential expression Host–pathogen interaction 



We thank the Indian Council of Agricultural Research, New Delhi for funding through Outreach program on Phytophthora, Fusarium and Ralstonia diseases of horticultural and field crops (PhytoFuRa) and mass spectrometry facility, C-CAMP, NCBS, Bangalore for the LC/MS analysis.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Anandaraj M (2000) Diseases of black pepper. In: Ravindran PN (ed) Black pepper (Piper nigrum L.). Harwood Academic Publishers, New York, pp 239–268Google Scholar
  2. Asiegbu FO, Choi W, Li G, Nahalkova J, Dean RA (2003) Isolation of a novel antimicrobial peptide gene (SpAMP) homologue from Pinus sylvestris (Scots pine) following infection with the root rot fungus Heterobasidion annosum. FEMS Microbiol Lett 228:27–31CrossRefPubMedGoogle Scholar
  3. Cammue BPA, De Bolle MFC, Terras FRG, Proost P, Van Damme J, Rees SB, Vanderleyden J, Broekaert WF (1992) Isolation and characterization of a novel class of plant antimicrobial peptides from Mirabilis jalapa L. seeds. J Biol Chem 267:2228–2233PubMedGoogle Scholar
  4. Egorov TA, Odintsova TI, Vitaliy A, Pukhalsky VA, Grishin EV (2005) Diversity of wheat anti-microbial peptides. Peptides 26:2064–2073CrossRefPubMedGoogle Scholar
  5. Fan B, Shen L, Liu K, Zhao D, Yu M, Sheng J (2008) Interaction between nitric oxide and hydrogen peroxide in post harvest tomato resistance response to Rhizopus nigricans. J Sci Food Agric 88:1238–1244CrossRefGoogle Scholar
  6. Gasteiger E, Hoogland C, Gattiker A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, New York, pp 571–607CrossRefGoogle Scholar
  7. Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Raghava GPS (2013) In silico approach for predicting toxicity of peptides and proteins. PLoS ONE 8(9):e73957CrossRefPubMedPubMedCentralGoogle Scholar
  8. Hammami R, Ben Hamida J, Fliss I (2009) PhytAMP: a database dedicated to antimicrobial plant peptides. Nucleic Acids Res D 963:8Google Scholar
  9. Hancock RE (1997) Peptide antibiotics. Lancet 349(9049):418–422CrossRefPubMedGoogle Scholar
  10. Ke T, Cao H, Huang J, Hu F, Huang J, Dong C, Ma X, Yu J, Mao H, Wang X, Niu Q, Hui F, Liu S (2015) EST-based in silico identification and in vitro test of antimicrobial peptides in Brassica napus. BMC Genom 16:653CrossRefGoogle Scholar
  11. Kolaskar AS, Tongaonkar PC (1990) A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett 276(1–2):172–174CrossRefPubMedGoogle Scholar
  12. Matejuk A, Leng Q, Begum MD, Woodle MC, Scaria P, Chou S-T, Mixson AJ (2010) Peptide-based antifungal therapies against emerging infections. Drugs Future 35(3):197CrossRefPubMedPubMedCentralGoogle Scholar
  13. Nawrot R, Barylski J, Nowicki G, Broniarczyk J, Buchwald W, Gozdzicka-Jozefiak A (2014) Plant antimicrobial peptides. Folia Microbiol 59(3):181–196CrossRefGoogle Scholar
  14. Parashina EV, Serdobinskii LA, Kalle EG, Lavorova NV, Avetnov VA, Lumin VG, Naroditskii BS (2000) Genetic engineering of oilseed rape and tomato plants expressing a radish defensin gene. Russ J Plant Physiol 47:417–423Google Scholar
  15. Park CJ, Park CB, Hong SS, Lee HS, Lee SY, Kim SC (2000) Characterization and cDNA cloning of two glycine- and histidine-rich antimicrobial peptides from the roots of shepherd_spurse, Capsella bursa-pastoris. Plant Mol Biol 44:187–197CrossRefPubMedGoogle Scholar
  16. Pelegrini PB, Del Sarito RP, Silva ON, Franco OL, Grossi-de-sa MF (2011) Antimicrobial peptides from plants: what they are and how they probably work. Biochem Res Int 2011:250349Google Scholar
  17. Powers JP, Hancock RE (2003) The relationship between peptide structure and antibacterial activity. Peptides 24(11):1681–1691CrossRefPubMedGoogle Scholar
  18. Rahnamaeian M (2011) Antimicrobial peptides: modes of mechanism, modulation of defense responses. Plant Signal Behav 6:1325–1332CrossRefPubMedPubMedCentralGoogle Scholar
  19. Robinson MW, Hutchinson AT, Donnelly S (2012) Antimicrobial peptides: utility players in innate immunity. Front Immunol 3:325CrossRefPubMedPubMedCentralGoogle Scholar
  20. Salzet M, Stefano G (2003) Chromacin-like peptide in leeches. Neuro Endocrinol Lett 24(3/4):227–232PubMedGoogle Scholar
  21. Sarika, Iquebalb MA, Rai A (2012) Biotic stress resistance in agriculture through antimicrobial peptides. Peptides 36:322–330CrossRefPubMedGoogle Scholar
  22. Scott MG, Dullaghan E, Mookherjee N, Waldbrook M, Thompson A, Wang A, Lee K, Doria S, Hamil P, Yu JJ, Li Y, Donini O, Guarna MM, Finlay BB, North JR, Hancock RE (2007) An anti infective peptide that selectively modulates the innate immune response. Nat Biotechnol 25:465–472CrossRefPubMedGoogle Scholar
  23. Sharma A, Singla D, Rashid M, Raghava GPS (2014) Designing of peptides with desired half-life in intestine-like environment. BMC Bioinformatics 15:282CrossRefPubMedPubMedCentralGoogle Scholar
  24. Silva ON, Porto WF, Migliolo L, Mandal SM, Gomes DG, Holanda HH, Silva RS, Dias SC, Costa MP, Costa CR, Silva MR, Rezende TM, Franco OL (2012) Cn-AMP1: a new promiscuous peptide with potential for microbial infections treatment. Biopolymers 98(4):322–331CrossRefPubMedGoogle Scholar
  25. Song R, Wei R, Luo H, Wang D (2012) Isolation and characterization of an antibacterial peptide fraction from the pepsin hydrolysate of half-fin anchovy (Setipinna taty). Molecules 17:2980–2991CrossRefPubMedGoogle Scholar
  26. Umadevi P, Anandaraj M (2015) An efficient protein extraction method for proteomic analysis of black pepper (Piper nigrum L.) and generation of protein map using nano LC-LTQ Orbitrap mass spectrometry. Plant Omics 8(6):500–507Google Scholar
  27. Van den Bergh KPB, Proost P, Van Damme J, Coosemans J, Van Damme EJM, Peumans WJ (2002) Five disulfide bridges stabilize a hevein-type antimicrobial peptide from the bark of spindle tree (Euonymus europaeus L.). FEBS Lett 530(1–3):181–185CrossRefPubMedGoogle Scholar
  28. Waghu FH, Barai RS, Gurung P, Idicula-Thomas S (2016) CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res 44:D1094–D1097CrossRefPubMedGoogle Scholar
  29. Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44:D1087–D1093CrossRefPubMedGoogle Scholar
  30. Wegener KL, Brinkworth CS, Bowie JH (2001) Bioactive dahlein peptides from the skin secretions of the Australian aquatic frog Litoria dahlii: sequence determination by electrospray mass spectrometry. Rapid Commun Mass Spectrom 15(18):1726–1734CrossRefPubMedGoogle Scholar
  31. Weinhold A, Wielsch N, Svatos A, Baldwin IT (2015) Label-free nanoUPLC-MSE based quantification of antimicrobial peptides from the leaf apoplast of Nicotiana attenuate. BMC Plant Biol 15:18CrossRefPubMedPubMedCentralGoogle Scholar
  32. Zhang L, Rozek A, Hancock REW (2001) Interaction of cationic antimicrobial peptides with model membranes. J Biol Chem 276(38):35714–35722CrossRefPubMedGoogle Scholar
  33. Zhou M, Hu Q, Li Z, Li D, Chen C, Luo H (2011) Expression of a novel antimicrobial peptide Penaeidin 4-1 in creeping bentgrass (Agrostis stolonifera L.) enhances plant fungal disease resistance. PLoS ONE 6(9):e24677CrossRefPubMedPubMedCentralGoogle Scholar
  34. Zipfel C (2009) Early molecular events in PAMP-triggerd immunity. Curr Opin Plant Biol 12:414–420CrossRefPubMedGoogle Scholar

Copyright information

© Prof. H.S. Srivastava Foundation for Science and Society 2018

Authors and Affiliations

  • P. Umadevi
    • 1
  • M. Soumya
    • 1
  • Johnson K. George
    • 1
  • M. Anandaraj
    • 2
  1. 1.Division of Crop Improvement and BiotechnologyICAR-Indian Institute of Spices ResearchKozhikodeIndia
  2. 2.Division of Crop ProtectionICAR-Indian Institute of Spices ResearchKozhikodeIndia

Personalised recommendations