Skip to main content

Advertisement

Log in

Molecular insights into genetic diversity and population dynamics of five medicinal Eulophia species: a threatened orchid taxa of Africa

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Genetic diversity existing amongst five Eulophia orchid species were assessed using start codon targeted polymorphism (SCoT) and inter-retrotransposon amplified polymorphism (IRAP) markers. A total of 12 SCoT and 5 IRAP markers revealed an average of 63% genetic variability [SCoT = 63.87; IRAP = 64.95%] amongst the five Eulophia species investigated. The genetic similarities were assessed using both UPGMA and Bayesian approaches which indicated identical clustering patterns at a genetic similarity level of 50%. Analysis of molecular variance (AMOVA) revealed the presence of a significant degree of genetic variability, mostly compartmentalized within the species level. Amongst the five assessed Eulophia species, E. parviflora was the most genetically diverse representative whereas E. welwitschii was found to be least diverse based on a comparative assessment of various population genetic parameters like Nei’s gene diversity (h) and Shannon’s information index (I) with an overall gene flow value greater than 1. In order to evaluate the comparative marker efficiency, SCoT and IRAP marker data were subjected to various benchmark analyses like marker index, resolving power, polymorphic index content, multiplex ratio and effective multiplex ratio which revealed the robustness of both the marker techniques in assessment of genetic diversity. The present report provides the first molecular insights into the aspects of inter and intra specific genetic variability in medicinally as well as horticulturally important Eulophia species along with addressing their conservation concerns. In a nutshell, the present approach is simple, rapid and cost effective and can be extended for analysis of genetic diversity of other related plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

PCR:

Polymerase chain reaction

PIC :

Polymorphic information content

AMOVA:

Analysis of molecular variance

Rp :

Resolving power

References

  • Bhattacharyya P, Kumaria S (2015) Molecular characterization of Dendrobium nobile Lindl., an endangered medicinal orchid, based on randomly amplified polymorphic DNA. Plant Syst Evol 301:201–210

    Article  CAS  Google Scholar 

  • Bhattacharyya P, Van Staden J (2016) Ansellia africana (Leopard orchid): a medicinal orchid species with untapped reserves of important biomolecules—a mini review. S Afr J Bot 106:181–185

    Article  CAS  Google Scholar 

  • Bhattacharyya P, Kumaria S, Kumar S, Tandon P (2013) Start Codon Targeted (SCoT) marker reveals genetic diversity of Dendrobium nobile Lindl., an endangered medicinal orchid species. Gene 529:21–26

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya P, Kumaria S, Tandon P (2015) Applicability of ISSR and DAMD markers for phyto-molecular characterization and association with some important biochemical traits of Dendrobium nobile, an endangered medicinal orchid. Phytochemistry 117:306–316

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya P, Kumaria S, Tandon P (2016) High frequency regeneration protocol for Dendrobium nobile: a model tissue culture approach for propagation of medicinally important orchid species. S Afr J Bot 104:232–243

    Article  CAS  Google Scholar 

  • Bhattacharyya P, Ghosh S, Sen Mandi S, Kumaria S, Tandon P (2017) Genetic variability and association of AFLP markers with some important biochemical traits in Dendrobium thyrsiflorum, a threatened medicinal orchid. S Afr J Bot 109:214–222

    Article  CAS  Google Scholar 

  • Cabo S, Ferreira L, Carvalho A, Martins-Lopes P, Martín A, Lima-Brito JE (2014) Potential of Start Codon Targeted (SCoT) markers for DNA fingerprinting of newly synthesized tritordeums and their respective parents. J Appl Genet 55:307–312

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Zhao L, Bai Y, Hu R, Si J (2009) Genetic relationship analysis of different provenances of Leonurus japonicus by ISSR marker. China J Chin Mater Med 34:1343–1345

    CAS  Google Scholar 

  • Chinsamy M, Finnie JF, Van Staden J (2011) The ethnobotany of South African medicinal orchids. S Afr J Bot 77:2–9

    Article  Google Scholar 

  • Chowdhery HJ (2001) Orchid diversity in North-east India. J Orchid Soc India 15:1–17

    Google Scholar 

  • Collard BCY, Mackill DJ (2009) Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Rep 27:86–93

    Article  CAS  Google Scholar 

  • Cunningham AB (1988) An investigation of the herbal medicine trade in Natal/KwaZulu. Institute of Natural Resources, University of Natal, Pietermaritzburg

    Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–242

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47

    Article  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  PubMed Central  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feng S, He R, Yang S, Chen Z, Jiang M, Lu J, Wang H (2015) Start codon targeted (SCoT) and target region amplification polymorphism (TRAP) for evaluating the genetic relationship of Dendrobium species. Gene 567:182–188

    Article  PubMed  CAS  Google Scholar 

  • Gepts P (2002) A comparison between crop domestication, classical plant breeding, and genetic engineering. Crop Sci 42:1780–1790

    Article  Google Scholar 

  • Gerstner J (1941) A preliminary check list of Zulu names of plants: with short notes. Bantu Stud 15:277–301

    Article  Google Scholar 

  • Graner A, Dehmer KJ, Thiel T, Börner A (2004) IV. Plant genetic resources: benefits and implications of using molecular markers. Evol Role Genebanks Fast-developing F Mol Genet Genet Resour No 11, 26 Aug 2004

  • Gupta PK, Varshney RK, Prasad M (2002) Molecular markers: principles and methodology. In: Molecular techniques in crop improvement. Springer, pp 9–54

  • Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans R Soc Lond Ser B Biol Sci 351:1291–1298

    Article  Google Scholar 

  • Holsinger KE, Mason-Gamer RJ, Whitton J (1999) Genes, denies, and plant conservation. In: Landweber LF, Dobson AP (eds) Genetics and the extinction of species. Princeton University Press, Oxford, pp 23–46

    Google Scholar 

  • Hulme M (1954) Wild flowers of Natal. Shuter & Shooter, Pietermaritzburg

    Google Scholar 

  • Hutchings A (1996) Zulu medicinal plants: an inventory. University of Natal Press, Pietermaritzburg

    Google Scholar 

  • Jin WT, Yao SP (2006) Cultivation and appreciation of noble Spring Orchid cultivars. Guangdong Science and Technology Press, Guangzhou, China

    Google Scholar 

  • Kalendar R, Schulman AH (2006) IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nat Protoc 1:2478–2484

    Article  PubMed  CAS  Google Scholar 

  • Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–711

    Article  CAS  Google Scholar 

  • Lande R (1999) Extinction risks from anthropogenic, ecological and genetic factors. In: Landweber LF, Dobson AP (eds) Genetics and the extinction of species. Princeton University Press, pp 1–22

  • Landry BS, Li RQ, Cheung WY, Granger RL (1994) Phylogeny analysis of 25 apple rootstocks using RAPD markers and tactical gene tagging. Theor Appl Genet 89:847–852

    PubMed  CAS  Google Scholar 

  • Li A, Ge S (2006) Genetic variation and conservation of Changnienia amoena, an endangered orchid endemic to China. Plant Syst Evol 258:251–260

    Article  CAS  Google Scholar 

  • Manners V, Kumaria S, Tandon P (2013) SPAR methods revealed high genetic diversity within populations and high gene flow of Vanda coerulea Griff ex Lindl (Blue Vanda), an endangered orchid species. Gene 519:91–97

    Article  PubMed  CAS  Google Scholar 

  • Martos F, Johnson SD, Peter CI, Bytebier B (2014) A molecular phylogeny reveals paraphyly of the large genus Eulophia (Orchidaceae): a case for the reinstatement of Orthochilus. Taxon 63:9–23

    Article  Google Scholar 

  • Maunder M, Culham A, Alden B, Zizka G, Orliac C, Lobin W, Bordeu A, Ramirez JM, Glissmann-Gough S (2000) Conservation of the Toromiro tree: case study in the management of a plant extinct in the wild. Conserv Biol 14:1341–1350

    Article  Google Scholar 

  • Mehra PN, Khosla PK (1973) Cytological studies of Himalayan Rutaceae. Silvae Genet 22:182–188

    Google Scholar 

  • Miller MP (1998) AMOVA-PREP 1.01: a program for the preparation of AMOVA input files from dominant-markers raw data. Comput Softw Distrib 22:927–934

    Google Scholar 

  • Milligan BG, Leebens-Mack J, Strand AE (1994) Conservation genetics: beyond the maintenance of marker diversity. Mol Ecol 3:423–435

    Article  Google Scholar 

  • Mulpuri S, Muddanuru T, Francis G, Sujatha M, Tarakeswari M, Francis G (2013) Start codon targeted (SCoT) polymorphism in toxic and non-toxic accessions of Jatropha curcas L and development of a codominant SCAR marker. Plant Sci 207:117–127

    Article  PubMed  CAS  Google Scholar 

  • Muñoz M, Warner J, Albertazzi FJ (2010) Genetic diversity analysis of the endangered slipper orchid Phragmipedium longifolium in Costa Rica. Plant Syst Evol 290:217–223

    Article  Google Scholar 

  • Nekrutenko A, Makova KD, Baker RJ (2000) Isolation of binary species-specific PCR-based markers and their value for diagnostic applications. Gene 249:47–51

    Article  PubMed  CAS  Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155

    Article  PubMed  CAS  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rohlf JF (1998) NTSYS pc, numerical taxonomy and multivariate analysis system version 2.0 user guide. Setauket

  • Sharma SK, Kumaria S, Tandon P, Rao SR (2011) Single primer amplification reaction (SPAR) reveals inter-and intra-specific natural genetic variation in five species of Cymbidium (Orchidaceae). Gene 483:54–62

    Article  PubMed  CAS  Google Scholar 

  • Shimada T, Hayama H, Haji T, Yamaguchi M, Yoshida M (1999) Genetic diversity of plums characterized by random amplified polymorphic DNA (RAPD) analysis. Euphytica 109:143–147

    Article  CAS  Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural. Science 236:787–792

    Article  PubMed  CAS  Google Scholar 

  • Slatkin M, Barton NH (1989) A comparison of three indirect methods for estimating average levels of gene flow. Evolution (NY) 43:1349–1368

    Article  Google Scholar 

  • Smith JSC, Chin ECL, Shu H, Smith OS, Wall SJ, Senior ML, Mitchell SE, Kresovich S, Ziegle J (1997) An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPs and pedigree. Theor Appl Genet 95:163–173

    Article  CAS  Google Scholar 

  • Sneller CH, Miles JW, Hoyt JM (1997) Agronomic performance of soybean plant introductions and their genetic similarity to elite lines. Crop Sci 37:1595–1600

    Article  Google Scholar 

  • Soorni A, Nazeri V, Fattahi R, Khadivi-Khub A (2013) DNA fingerprinting of Leonurus cardiaca L. germplasm in Iran using amplified fragment length polymorphism and inter-retrotransposon amplified polymorphism. Biochem Syst Ecol 50:438–447

    Article  CAS  Google Scholar 

  • Swarts ND, Dixon KW (2009a) Terrestrial orchid conservation in the age of extinction. Ann Bot 104:543–556

    Article  PubMed  PubMed Central  Google Scholar 

  • Swarts ND, Dixon KW (2009b) Perspectives on orchid conservation in botanic gardens. Trends Plant Sci 14:590–598

    Article  PubMed  CAS  Google Scholar 

  • Swarts ND, Sinclair EA, Krauss SL, Dixon KW (2009) Genetic diversity in fragmented populations of the critically endangered spider orchid Caladenia huegelii: implications for conservation. Conserv Genet 10:1199–1208

    Article  Google Scholar 

  • Tong-Jian S, Liu-Qin Z, Xin S (1991) A marker-coupled method for site-directed mutagenesis. Gene 103:73–77

    Article  Google Scholar 

  • Wang HZ, Wu ZX, Lu JJ, Shi NN, Zhao Y, Zhang ZT, Liu JJ, Zhang ZT, Liu JJ (2009) Molecular diversity and relationships among Cymbidium goeringii cultivars based on inter-simple sequence repeat (ISSR) markers. Genetica 136:391–399

    Article  PubMed  CAS  Google Scholar 

  • Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BBT, Powell W (1997) Genetic distribution of Bare–1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet MGG 253:687–694

    Article  PubMed  CAS  Google Scholar 

  • WCSP (2016) World Checklist of Selected Plant Families. Facilitated by the Royal Botanic Gardens, Kew. http://apps.kew.org/wcsp/. Accessed 20 June 2016

  • Xiong F, Zhong R, Han Z, Jiang J, He L, Zhuang W, Tang R (2011) Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut (Arachis hypogaea L.) genotypes. Mol Biol Rep 38:3487–3494

    Article  PubMed  CAS  Google Scholar 

  • Yeh FC, Yang R-C, Boyle T (1999) PopGene version 1.31: Microsoft window-based freeware for population genetic analysis. University of Alberta, Edmonton

    Google Scholar 

  • Yu Q, Sheng XX, Sheng YF et al (2009) AFLP Analysis of genetic diversity of Leonurus japonicus germplasm resources. Chin Tradit Herb Drugs 40:1296–1299

    CAS  Google Scholar 

Download references

Acknowledgements

Paromik Bhattacharyya thanks the University of KwaZulu-Natal (UKZN), South Africa for support in the form of a Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes van Staden.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharyya, P., van Staden, J. Molecular insights into genetic diversity and population dynamics of five medicinal Eulophia species: a threatened orchid taxa of Africa. Physiol Mol Biol Plants 24, 631–641 (2018). https://doi.org/10.1007/s12298-018-0523-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-018-0523-6

Keywords

Navigation