Physiology and Molecular Biology of Plants

, Volume 24, Issue 3, pp 483–491 | Cite as

Genetic diversity and structure of Capparis spinosa L. in Iran as revealed by ISSR markers

  • Maryam Ahmadi
  • Hojjatollah Saeidi
Research Article


Capparis spinosa L. (caper bush) is an economically and ecologically important perennial shrub that grows across different regions of Iran. In this study, the genetic diversity and population structure of Iranian genepool of C. spinosa is evaluated using Inter Simple Sequence Repeat (ISSR) markers. Using 10 ISSR primers, 387 DNA fragments (bands) were amplified from the genomic DNA of 92 individuals belonging to twenty-one populations of C. spinosa, of which 378 (97.7%) were polymorphic. High level of genetic diversity (percentage of polymorphic loci = 98.2%, h = 0.1382, I = 0.243), high genetic differentiation (Gst = 0.5234) and low gene flow (Nm = 0.4553) among populations were observed. Caper bush populations were divided into 4 groups in the dendrogram, PCoA plot and Bayesian clustering results, mostly corresponded to their geographic regions. The results showed that there are value in sampling Iranian caper bush populations to look for valuable alleles for use in plant breeding programs.


Caper bush Genetic diversity Iran ISSR 



This research was a part of the Ph.D. thesis of the first author. We wish to thank the Office of Graduate Studies of the University of Isfahan (Iran) for their support. The authors are grateful to the two anonymous reviewers for their valuable comments on the manuscript.


  1. Al-Safadi B, Faouri H, Elias R (2014) Genetic diversity of some Capparis L. species growing in Syria. Braz Arch Biol Technol 57(6):916–926CrossRefGoogle Scholar
  2. Barbera G, Di Lorenzo R (1984) The caper culture in Italy. Acta Hortic 144:167–171CrossRefGoogle Scholar
  3. Bentham G, Hooker JD (1862) Genera plantarum. Reeve, LondonGoogle Scholar
  4. Bhoyar MS, Mishra GP, Naik PK, Murkute AA, Srivastava RB (2012) Genetic variability studies among natural populations of Capparis spinosa from cold arid desert of trans-himalayas using DNA markers. Natl Acad Sci Lett 35(6):505–515CrossRefGoogle Scholar
  5. Boissier E (1843) Diagnoses plantarum orientalium novarum. Apud B. Herrmann, Lipsiae, ParisGoogle Scholar
  6. Boissier E (1867) Flora Orientalis sive enumeratio plantarum in Oriente a Graecia et Aegypto ad Indiae fines hucusque observatarum. H. Georg, Basel, GenèveCrossRefGoogle Scholar
  7. Cornejo X, Iltis HH (2008a) Anisocapparis y Monilicarpa, dos nuevos géneros de Capparaceae de América del Sur. J Bot Res Inst Texas 2(1):61–74Google Scholar
  8. Cornejo X, Iltis HH (2008b) The reinstatement of Capparidastrum (Capparaceae). Harv Pap Bot 13(2):229–236CrossRefGoogle Scholar
  9. Cornejo X, Iltis HH (2008c) Two new genera of Capparaceae: Sarcotoxicum and Mesocapparis stat. nov., and the reinstatement of Neocalyptrocalyx. Harv Pap Bot 13(1):103–116CrossRefGoogle Scholar
  10. Cullings KW (1992) Design and testing of a plant-specific PCR primer for ecological and evolutionary studies. Mol Ecol 1:233–240CrossRefGoogle Scholar
  11. De Candolle AP (1824) Prodromus systematis naturalis regni vegetabilis, sive enumeratio contracta ordinum generum specierumque plantarum huc usque cognitarum, juxta methodi naturalis normas digesta. Treuttel et Würtz, ParisGoogle Scholar
  12. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  13. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620CrossRefPubMedGoogle Scholar
  14. Fici S (2014) A taxonomic revision of the Capparis spinosa group (Capparaceae) from the Mediterranean to Central Asia. Phytotaxa 174(1):1–24CrossRefGoogle Scholar
  15. Fici S (2015) A taxonomic revision of the Capparis spinosa group (Capparaceae) from eastern Africa to Oceania. Phytotaxa 203(1):024–036CrossRefGoogle Scholar
  16. Gristina AS, Fici S, Siragusa M, Fontana I, Garfìa G, Carimi F (2014) Hybridization in Capparis spinosa L.: molecular and morphological evidence from a Mediterranean island complex. Flora 209:733–741CrossRefGoogle Scholar
  17. Hall JC (2008) Systematics of Capparaceae and Cleomaceae: an evaluation of the generic delimitations of Capparis and Cleome using plastid DNA sequence data. Botany 86(7):682–696CrossRefGoogle Scholar
  18. Hedge IC, Lamond J (1970) Capparidaceae. In: Rechinger KH (ed) Flora Iranica, vol 68. Akademische Druck-u, Verlagsanstalt, Graz, pp 1–9Google Scholar
  19. Higton RN, Akeroyd JR (1991) Variation in Capparis spinosa L. in Europe. Bot J Linn Soc 106:104–112Google Scholar
  20. Hutchinson J (1967) The genera of flowering plants (Angiospermae). Oxford Univeristy Press, LondonGoogle Scholar
  21. Inocencio C, Cowan RS, Alcaraz F, Rivera D, Fay MF (2005) AFLP fingerprinting in Capparis subgenus Capparis related to the commercial sources of capers. Genet Resour Crop Evol 52:137–144CrossRefGoogle Scholar
  22. Inocencio C, Rivera D, Obón MC, Alcaraz F, Barrenã A (2006) A systematic revision of Capparis section Capparis (Capparaceae). Ann Mo Bot Gard 93(1):122–149CrossRefGoogle Scholar
  23. Jaccard P (1908) Nouvelles recherché sur distribution florale. Bull Soc Vaud Sci Nat 4:223–270Google Scholar
  24. Jacobs M (1965) The genus Capparis (Capparaceae) from the Indus to the Pacific. Blumea 12:385–541Google Scholar
  25. Linnaeus C (1753) Species plantarum. Impensis Laurentii Salvii, HolmiaeGoogle Scholar
  26. Liu C, Xue GP, Cheng B, Wang X, He J, Liu GH, Yang WJ (2015) Genetic diversity analysis of Capparis spinosa L. populations by using ISSR markers. Genet Mol Res 14(4):16476–16483CrossRefPubMedGoogle Scholar
  27. Mahla HR, Rathore VS, Singh D, Singh JP (2013) Capparis decidua (Forsk.) Edgew.: an underutilized multipurpose shrub of hot arid region—distribution, diversity and utilization. Genet Resour Crop Evol 60:385–394CrossRefGoogle Scholar
  28. Özbek O, Kara A (2013) Genetic variation in natural populations of Capparis from Turkey, as revealed by RAPD analysis. Plant Syst Evol 299:1911–1933CrossRefGoogle Scholar
  29. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol 6:288–295CrossRefGoogle Scholar
  30. Perrier X, Jacquemoud-Collet JP (2006) DARwin software.
  31. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  32. Rao RV, Hodgkin T (2002) Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell Tissue Organ Cult 68(1):1–19CrossRefGoogle Scholar
  33. Safaei M, Sheidai M, Alijanpoor B, Noormohammadi Z (2016) Species delimitation and genetic diversity analysis in Salvia with the use of ISSR molecular markers. Acta Bot Croat 75(1):45–52Google Scholar
  34. Saghafi Khadem F (2000) Flora of Iran. N: 30. Research Institute of Forests and Rangelands, TehranGoogle Scholar
  35. Saifi N, Ibijbijen J, Echchgadda D (2011) Genetic diversity of caper plant (Capparis ssp.) from North Morocco. J Food Agric Environ 9(3 & 4):299–304Google Scholar
  36. Segarra-Moragues JG, Marco YC, Castellanos MC, Molina MJ, Garcîa- Fayos P (2016) Ecological and historical determinants of population genetic structure and diversity in the Mediterranean shrub Rosmarinus officinalis (Lamiaceae). Bot J Linn Soc 180:50–63CrossRefGoogle Scholar
  37. Singh N, Bajpai R, Mahar KS, Tiwari V, Upreti DK, Rana TS (2014) ISSR and DAMD markers revealed high genetic variability within Flavoparmelia caperata in Western Himalaya (India). Physiol Mol Biol Plant 20(4):501–508CrossRefGoogle Scholar
  38. Tlili N, Elfalleh W, Saadaoui E, Khaldi A, Triki S, Nasri N (2011) The caper (Capparis L.): Ethnopharmacology, phytochemical and pharmacological properties. Fitoterapia 82:93–101CrossRefPubMedGoogle Scholar
  39. Vashishtha A, Jehan T, Lakhanpaul S (2013) Genetic diversity and population structure of Butea monosperma (Lam.) Taub. a potential medicinal legume tree. Physiol Mol Biol Plants 19(3):389–397CrossRefPubMedPubMedCentralGoogle Scholar
  40. Wang Q, Zhang ML, Yin LK (2016) Genetic diversity and population differentiation of Capparis spinosa (Capparaceae) in Northwestern China. Biochem Syst Ecol 66:1–7CrossRefGoogle Scholar
  41. Yeh F, Boyle T, Rongcai Y, Ye Z (1999) POPGENE version 1.31: Microsoft window based freeware for population genetic analysis. University of Alberta, EdmontonGoogle Scholar
  42. Zhang T, Tan DY (2008) The sexual system of andromonoecious Capparis spinosa L. (Capparaceae) and its significances for adaptation to the desert environment. J Syst Evol 46:861–873Google Scholar
  43. Zhang T, Tan DY (2009) An examination of the function of male flowers in an andromonoecious shrub Capparis spinosa. J Integr Plant Biol 51:316–324CrossRefPubMedGoogle Scholar
  44. Zohary M (1960) The species of Capparis in the Mediterranean and the Near Eastern countries. Bull Res Counc Isr 8D:49–64Google Scholar

Copyright information

© Prof. H.S. Srivastava Foundation for Science and Society 2018

Authors and Affiliations

  1. 1.Department of BiologyUniversity of IsfahanIsfahanIran

Personalised recommendations