Skip to main content
Log in

Delayed expression of SAGs correlates with longevity in CMS wheat plants compared to its fertile plants

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Reproductive sinks regulate monocarpic senescence in crop plants. Monocarpic senescence was studied in wheat fertile (cv. HW 2041) and its isonuclear cytoplasmic male sterile (CMS) line. CMS plants exhibited slower rate of senescence accompanied by longer green leaf area duration and slower deceleration in chlorophyll, protein content, PN and rubisco content coupled with lower protease activities than fertile (F) plants. CMS plants also exhibited lower ROS levels and less membrane damage than F plants. CMS plants maintained better antioxidant defense, less oxidative damage in chloroplast and higher transcript levels of both rbcL and rbcS genes during senescence than F plants. F plants exhibited early induction and higher expression of SAGs like serine and cysteine proteases, glutamine synthetases GS1 and GS2, WRKY53 transcription factor and decline in transcript levels of CAT1 and CAT2 genes than CMS plants. Hence, using genetically fertile and its CMS line of wheat it is confirmed that delayed senescence in the absence of reproductive sinks is linked with slower protein oxidation, rubisco degradation and delayed activation of SAGs. Better antioxidant defense in chloroplasts at later stages of senescence was able to mitigate the deleterious effects of ROS in CMS plants. We propose that delayed increase in ROS in cytoplasmic male sterile wheat plants resulted in delayed activation of WRKY53, SAGs and the associated biochemical changes than fertile plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AsA:

Ascorbate

APX:

Ascorbate peroxidase

CP:

Cysteine protease

CAT:

Catalase

DAA:

Days after anthesis

GS:

Glutamine synthetase

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

SAGs:

Senescence associated genes

SP:

Serine protease

References

  • Aggarwal PK, Sinha SK (1987) Performance of wheat and tritcale varieties in a variable soil water environment. IV. Yield components and their association with grain yield. Field Crop Res 17:45–53

    Article  Google Scholar 

  • Almeselmani M, Deshmukh PS, Chinnusamy V (2012) Effects of prolonged high temperature stress on respiration, photosynthesis and gene expression in wheat (Triticum aestivum L.) varieties differing in their thermotolerance. Plant Stress 6:25–32

    Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Balazadeh S, Wu A, Mueller-Roeber B (2010) Salt-triggered expression of the ANAC092-dependent senescence regulon in Arabidopsis thaliana. Plant Signal Behav 5:733–735

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bieker S, Riester L, Stahl M, Franzaring J, Zentgraf U (2012) Senescence-specific alteration of hydrogen peroxide levels in Arabidopsis thaliana and oilseed rape spring variety Brassica napus L cv. Mozart. J Integr Plant Biol 54:540–554

    Article  CAS  PubMed  Google Scholar 

  • Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C et al (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23:873–894

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K et al (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signaling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585

    Article  CAS  PubMed  Google Scholar 

  • Chauhan S, Srivalli S, Nautiyal AR, Khanna-Chopra R (2009) Wheat cultivars differing in heat tolerance show a differential response to monocarpic senescence under high-temperature stress and the involvement of serine proteases. Photosynthetica 47:536–547

    Article  CAS  Google Scholar 

  • Crafts-Brandner SJ, Egli DB (1987) Sink removal and leaf senescence in soybean: cultivar effect. Plant Physiol 85:662–666

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • del Molino IMM, Martinez-Carrasco R, Perez P, Hernandez L, Morcuende R (1995) Influence of nitrogen supply and sink strength on changes in leaf nitrogen compounds during senescence in two wheat cultivars. Physiol Plant 95:51–58

    Article  Google Scholar 

  • Derkx AP, Orford S, Griffiths S, Foulkes MJ, Hawkesford MJ (2012) Identification of differentially senescing mutants of wheat and impacts on yield, biomass and nitrogen partitioning. J Integr Plant Biol 54:555–566

    Article  CAS  PubMed  Google Scholar 

  • Feller U, Anders I, Mae T (2008) Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated. J Exp Bot 59:1615–1624

    Article  CAS  PubMed  Google Scholar 

  • Finnemann J, Schjoerring JK (2000) Post-translational regulation of cytosolic glutamine synthetase by reversible phosphorylation and 14-3-3 protein interaction. Plant J 24:171–181

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905

    Article  CAS  PubMed  Google Scholar 

  • Goodall AJ, Kumar P, Alyson KT (2013) Identification and expression analysis of cytosolic glutamine synthase genes in barley (Hordeum vulgare L.). Plant Cell Physiol 54:492–505

    Article  CAS  PubMed  Google Scholar 

  • Grabowska A, Kwinta J, Bielawski W (2012) Glutamine synthetase and glutamate dehydrogenase in triticale seeds: molecular cloning and genes expression. Acta Physiol Plant 34:2393–2406

    Article  CAS  Google Scholar 

  • Guo Y, Cai Z, Gan S (2004) Transcriptome of Arabidopsis leaf senescence. Plant Cell Environ 27:521–549

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: 1 Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hinderhofer K, Zentgraf U (2001) Identification of a tran-scription factor specifically expressed at the onset of leaf senescence. Planta 213:469–473

    Article  CAS  PubMed  Google Scholar 

  • Kawakami N, Watanabe A (1988) Senescence-specific increase in cytosolic glutamine synthetase and its mRNA in radish cotyledons. Plant Physiol 88:1430–1434

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Khanna-Chopra R (2012) Leaf senescence and abiotic stresses share reactive oxygen species-mediated chloroplast degradation. Protoplasma 249:469–481

    Article  CAS  PubMed  Google Scholar 

  • Khanna-Chopra R, Sabarinath S (2004) Heat stable chloroplastic Cu/Zn SOD in Chenopodium murale. Biochem Biophys Res Commun 320:1187–1192

    Article  CAS  PubMed  Google Scholar 

  • Kichey T, Hirel B, Heumez E, Dubois F, Le Gouis J (2007) In winter wheat (Triticum aestivum L.), post-anthesis nitrogen uptake and remobilisation to the grain correlates with agronomic traits and nitrogen physiological markers. Field Crop Res 102:22–32

    Article  Google Scholar 

  • Koyama T, Nii H, Mitsuda N, Masaru O, Sakihito K, Ohme-Takagi M, Sato F (2013) A regulatory cascade involving class II ethylene response factor transcriptional repressors operates in the progression of leaf senescence. Plant Physiol 162:991–1005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structure proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Leon J, Rojo E, Sanchez-Serrano JJ (2000) Wound signaling in plants. J Exp Bot 52:1–9

    Article  Google Scholar 

  • Levine RL, Williams JA, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357

    Article  CAS  PubMed  Google Scholar 

  • Lilley RM, Fitzgerald MP, Rienits KG, Walker DA (1975) Criteria of intactness and the photosynthetic activity of spinach chloroplast preparations. New Phytol 75:1–10

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Luna CM, Pastori GM, Driscoll S, Groten K, Bernard S, Foyer CH (2005) Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. J Exp Bot 56:417–423

    Article  CAS  PubMed  Google Scholar 

  • Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatout C et al (2006) Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell 18:3252–3274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martínez DE, Bartoli CG, Grbic V, Guiamet JJ (2007) Vacuolar cysteine proteases of wheat (Triticum aestivum L.) are common to leaf senescence induced by different factors. J Exp Bot 58:1099–1107

    Article  PubMed  Google Scholar 

  • Miao Y, Laun TM, Smykowski A, Zentgraf U (2007) Arabidopsis MEKK1 can take a 4 short cut: it can directly interact with senescence-related WRKY53 transcription factor 5 on the protein level and can bind to its promoter. Plant Mol Biol 65:63–76

    Article  CAS  PubMed  Google Scholar 

  • Miao Y, Laun TM, Zimmermann P, Zentgraf U (2004) Targets of WRKY53 transcription factor and its role durin leaf senescence in Arabidopsis. Plant Mol Biol 55:853–867

    Article  CAS  PubMed  Google Scholar 

  • Miller BL, Huffaker RC (1985) Differential induction of endoproteinases during senescence of attached and detached barley leaves. Plant Physiol 78:442–446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mǿller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  PubMed  Google Scholar 

  • Munné B, Alegre L (2002) Plant aging increases oxidative stress in chloroplasts. Planta 214:608–615

    Article  Google Scholar 

  • Navabpour S, Morris K, Allen R, Harrison E, Mackerness SAH, Buchanan-Wollaston V (2003) Expression of senescence-enhanced genes in response to oxidative stress. J Exp Bot 54:2285–2292

    Article  CAS  PubMed  Google Scholar 

  • Nooden LD (1988) Whole plant senescence. In: Nooden LD, Leopold AC (eds) Senescence and aging in plants. Academic, San Diego, pp 391–439

    Google Scholar 

  • Peoples MB, Pate JS, Atkins CA (1983) Mobilization of nitrogen in fruiting plants of a cultivar of cowpea. J Exp Bot 34:563–578

    Article  CAS  Google Scholar 

  • Petrov VD, Van Breusegem F (2012) Hydrogen peroxide- a central hub for information flow in plants. AoB Plants pls014. doi:10.1093/aobpla/pls014

  • Rampino P, Spano G, Pataleo S, Mita G, Napier JA, Di Fonzo N, Shewry PR, Perrotta C (2006) Molecular analysis of a durum wheat ‘stay green’mutant: expression pattern of photosynthesis-related genes. J Cereal Sci 43:160–168

    Article  CAS  Google Scholar 

  • Roberts IN, Murray PF, Caputo CP, Passeron S, Barneix AJ (2003) Purification and characterization of a subtilisin-like serine protease induced during the senescence of wheat leaves. Physiol Plant 118:483–490

    Article  CAS  Google Scholar 

  • Simova SL, Vaseva I, Grigorova B, Demirevska K, Feller U (2010) Proteolytic activity and cysteine protease expression in wheat leaves under severe soil drought and recovery. Plant Physiol Biochem 48:200–206

    Article  Google Scholar 

  • Sinha P, Tomar SMS, Vinod, Singh VK, Balyan HS (2013) Genetic analysis and molecular mapping of a new fertility restorer gene Rf8 for Triticum timopheevi cytoplasm in wheat (Triticum aestivum L.) using SSR markers. Genetica. doi:10.1007/s10709-013-9742-5

    PubMed  Google Scholar 

  • Srivalli B, Bharti S, Khanna-Chopra R (2001) Vacuolar cysteine proteases and ribulose-1,5-bisphosphate carboxylase/ oxygenase degradation during monocarpic senescence in cowpea leaves. Photosynthetica 39:87–93

    Article  CAS  Google Scholar 

  • Srivalli B, Khanna-Chopra R (2004) The developing reproductive sink induces oxidative stress to mediate nitrogen mobilization during monocarpicsenescence in wheat. Biochem Biophys Res Commun 325:198–202

    Article  CAS  PubMed  Google Scholar 

  • Srivalli S, Khanna-Chopra R (2009) Delayed wheat flag leaf senescence due to removal of spikelets is associated with increased activities of leaf antioxidant enzymes, reduced glutathione/oxidized glutathione ratio and oxidative damage to mitochondrial proteins. Plant Physiol Biochem 47:663–670

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Kihara-Doi T, Kawazu T, Miyake C, Makino A (2010) Differences in Rubisco content and its synthesis in leaves at different positions in Eucalyptus globulus seedlings. Plant Cell Environ 33:1314–1323

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Makino A (2013) Translational downregulation of RBCL is operative in the coordinated expression of Rubisco genes in senescent leaves in rice. J Exp Bot. doi:10.1093/jxb/ers398

    Google Scholar 

  • Tomar SMS, Anbalagan S (2004) Characterization of cytoplasmic male sterile lines in wheat (Triticum aestivum L.). Indian J Genet 64:189–195

    Google Scholar 

  • Towbin H, Staehelin T, Gorgon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some application. Proc Natl Acad Sci U S A 76:4350–4354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    Article  CAS  PubMed  Google Scholar 

  • Vanacker H, Sandalio LM, Jimenez A, Palma JM, Corpas FJ, Meseguer V, Gomez M, Sevilla F, Leterrir M, Foyer CH, del Rio LA (2006) Role of redox regulation in leaf senescence of pea plants grown in different sources of nitrogen nutrition. J Exp Bot 57:1735–1745

    Article  CAS  PubMed  Google Scholar 

  • Veljovic-Jovanovic S, Noctor G, Foyer CH (2002) Are leaf hydrogen peroxide concentrations commonly overestimated? The potential influence of artefactual interference by tissue phenolics and ascorbate. Plant Physiol Biochem 40:501–507

    Article  CAS  Google Scholar 

  • Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T, Makino A (2009) Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol 149:885–893

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu H, Ni Z, Yao Y, Guo G, Sun Q (2008) Cloning and expression profiles of 15 genes encoding WRKY transcription factor in wheat (Triticum aestivem L.). Prog Nat Sci 18:697–705

    Article  CAS  Google Scholar 

  • Ye ZH, Varner JE (1996) Induction of cysteine and serine proteases during xylogenesis in Zinnia elegans. Plant Mol Biol 30:1233–1246

    Article  CAS  PubMed  Google Scholar 

  • Zentgraf U, Zimmermann P Smykowski (2012) A role of intracellular hydrogen peroxide as signalling molecule for plant senescence. In: Nagata T (eds) Senescence, ISBN: 978-953-51-0144-4. In Tech publishing, Rijeka, Croatia, pp 31–50

  • Zimmermann P, Orendi G, Heinlein C, Zentgraf U (2006) Senescence specific regulation of catalases in Arabidopsis thaliana (L.) Heynh. Plant Cell Environ 29:1049–1060

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann P, Zentgraf U (2005) The correlation between oxidative stress and leaf senescence during plant development. Cell Mol Biol Lett 10:515–534

    CAS  PubMed  Google Scholar 

  • Zivy M, Thiellement H, Devienne D, Hofmann JP (1983) Study on molecular and cytoplasmic genome expression in wheat by two-dimensional gel electrophoresis. 1. 1st results on 18 alloplasmic lines. Theor Appl Genet 66:1–7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the financial grants of CSIR Emeritus Scientist Scheme awarded to Dr. (Mrs.) R. K. Chopra.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Khanna-Chopra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semwal, V.K., Singh, B. & Khanna-Chopra, R. Delayed expression of SAGs correlates with longevity in CMS wheat plants compared to its fertile plants. Physiol Mol Biol Plants 20, 191–199 (2014). https://doi.org/10.1007/s12298-013-0215-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-013-0215-1

Keywords

Navigation